日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

ML之4PolyR:利用四次多项式回归4PolyR模型+两种正则化(Lasso/Ridge)在披萨数据集上拟合(train)、价格回归预测(test)

發布時間:2025/3/21 编程问答 21 豆豆
生活随笔 收集整理的這篇文章主要介紹了 ML之4PolyR:利用四次多项式回归4PolyR模型+两种正则化(Lasso/Ridge)在披萨数据集上拟合(train)、价格回归预测(test) 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

ML之4PolyR:利用四次多項式回歸4PolyR模型+兩種正則化(Lasso/Ridge)在披薩數據集上擬合(train)、價格回歸預測(test)

?

?

目錄

輸出結果

設計思路

核心代碼


?

?

?

輸出結果

?

設計思路

?

?

核心代碼

lasso_poly4 = Lasso() lasso_poly4.fit(X_train_poly4, y_train)ridge_poly4 = Ridge() ridge_poly4.fit(X_train_poly4, y_train)

?

class Lasso(ElasticNet):"""Linear Model trained with L1 prior as regularizer (aka the Lasso)The optimization objective for Lasso is::(1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1Technically the Lasso model is optimizing the same objective function asthe Elastic Net with ``l1_ratio=1.0`` (no L2 penalty).Read more in the :ref:`User Guide <lasso>`.Parameters----------alpha : float, optionalConstant that multiplies the L1 term. Defaults to 1.0.``alpha = 0`` is equivalent to an ordinary least square, solvedby the :class:`LinearRegression` object. For numericalreasons, using ``alpha = 0`` with the ``Lasso`` object is not advised.Given this, you should use the :class:`LinearRegression` object.fit_intercept : booleanwhether to calculate the intercept for this model. If setto false, no intercept will be used in calculations(e.g. data is expected to be already centered).normalize : boolean, optional, default FalseThis parameter is ignored when ``fit_intercept`` is set to False.If True, the regressors X will be normalized before regression bysubtracting the mean and dividing by the l2-norm.If you wish to standardize, please use:class:`sklearn.preprocessing.StandardScaler` before calling ``fit``on an estimator with ``normalize=False``.precompute : True | False | array-like, default=FalseWhether to use a precomputed Gram matrix to speed upcalculations. If set to ``'auto'`` let us decide. The Grammatrix can also be passed as argument. For sparse inputthis option is always ``True`` to preserve sparsity.copy_X : boolean, optional, default TrueIf ``True``, X will be copied; else, it may be overwritten.max_iter : int, optionalThe maximum number of iterationstol : float, optionalThe tolerance for the optimization: if the updates aresmaller than ``tol``, the optimization code checks thedual gap for optimality and continues until it is smallerthan ``tol``.warm_start : bool, optionalWhen set to True, reuse the solution of the previous call to fit asinitialization, otherwise, just erase the previous solution.positive : bool, optionalWhen set to ``True``, forces the coefficients to be positive.random_state : int, RandomState instance or None, optional, default NoneThe seed of the pseudo random number generator that selects a randomfeature to update. If int, random_state is the seed used by the randomnumber generator; If RandomState instance, random_state is the randomnumber generator; If None, the random number generator is theRandomState instance used by `np.random`. Used when ``selection`` =='random'.selection : str, default 'cyclic'If set to 'random', a random coefficient is updated every iterationrather than looping over features sequentially by default. This(setting to 'random') often leads to significantly faster convergenceespecially when tol is higher than 1e-4.Attributes----------coef_ : array, shape (n_features,) | (n_targets, n_features)parameter vector (w in the cost function formula)sparse_coef_ : scipy.sparse matrix, shape (n_features, 1) | \(n_targets, n_features)``sparse_coef_`` is a readonly property derived from ``coef_``intercept_ : float | array, shape (n_targets,)independent term in decision function.n_iter_ : int | array-like, shape (n_targets,)number of iterations run by the coordinate descent solver to reachthe specified tolerance.Examples-------->>> from sklearn import linear_model>>> clf = linear_model.Lasso(alpha=0.1)>>> clf.fit([[0,0], [1, 1], [2, 2]], [0, 1, 2])Lasso(alpha=0.1, copy_X=True, fit_intercept=True, max_iter=1000,normalize=False, positive=False, precompute=False, random_state=None,selection='cyclic', tol=0.0001, warm_start=False)>>> print(clf.coef_)[ 0.85 0. ]>>> print(clf.intercept_)0.15See also--------lars_pathlasso_pathLassoLarsLassoCVLassoLarsCVsklearn.decomposition.sparse_encodeNotes-----The algorithm used to fit the model is coordinate descent.To avoid unnecessary memory duplication the X argument of the fit methodshould be directly passed as a Fortran-contiguous numpy array."""path = staticmethod(enet_path)def __init__(self, alpha=1.0, fit_intercept=True, normalize=False, precompute=False, copy_X=True, max_iter=1000, tol=1e-4, warm_start=False, positive=False, random_state=None, selection='cyclic'):super(Lasso, self).__init__(alpha=alpha, l1_ratio=1.0, fit_intercept=fit_intercept, normalize=normalize, precompute=precompute, copy_X=copy_X, max_iter=max_iter, tol=tol, warm_start=warm_start, positive=positive, random_state=random_state, selection=selection)############################################################################### # Functions for CV with paths functions class Ridge(_BaseRidge, RegressorMixin):"""Linear least squares with l2 regularization.This model solves a regression model where the loss function isthe linear least squares function and regularization is given bythe l2-norm. Also known as Ridge Regression or Tikhonov regularization.This estimator has built-in support for multi-variate regression(i.e., when y is a 2d-array of shape [n_samples, n_targets]).Read more in the :ref:`User Guide <ridge_regression>`.Parameters----------alpha : {float, array-like}, shape (n_targets)Regularization strength; must be a positive float. Regularizationimproves the conditioning of the problem and reduces the variance ofthe estimates. Larger values specify stronger regularization.Alpha corresponds to ``C^-1`` in other linear models such asLogisticRegression or LinearSVC. If an array is passed, penalties areassumed to be specific to the targets. Hence they must correspond innumber.fit_intercept : booleanWhether to calculate the intercept for this model. If setto false, no intercept will be used in calculations(e.g. data is expected to be already centered).normalize : boolean, optional, default FalseThis parameter is ignored when ``fit_intercept`` is set to False.If True, the regressors X will be normalized before regression bysubtracting the mean and dividing by the l2-norm.If you wish to standardize, please use:class:`sklearn.preprocessing.StandardScaler` before calling ``fit``on an estimator with ``normalize=False``.copy_X : boolean, optional, default TrueIf True, X will be copied; else, it may be overwritten.max_iter : int, optionalMaximum number of iterations for conjugate gradient solver.For 'sparse_cg' and 'lsqr' solvers, the default value is determinedby scipy.sparse.linalg. For 'sag' solver, the default value is 1000.tol : floatPrecision of the solution.solver : {'auto', 'svd', 'cholesky', 'lsqr', 'sparse_cg', 'sag', 'saga'}Solver to use in the computational routines:- 'auto' chooses the solver automatically based on the type of data.- 'svd' uses a Singular Value Decomposition of X to compute the Ridgecoefficients. More stable for singular matrices than'cholesky'.- 'cholesky' uses the standard scipy.linalg.solve function toobtain a closed-form solution.- 'sparse_cg' uses the conjugate gradient solver as found inscipy.sparse.linalg.cg. As an iterative algorithm, this solver ismore appropriate than 'cholesky' for large-scale data(possibility to set `tol` and `max_iter`).- 'lsqr' uses the dedicated regularized least-squares routinescipy.sparse.linalg.lsqr. It is the fastest but may not be availablein old scipy versions. It also uses an iterative procedure.- 'sag' uses a Stochastic Average Gradient descent, and 'saga' usesits improved, unbiased version named SAGA. Both methods also use aniterative procedure, and are often faster than other solvers whenboth n_samples and n_features are large. Note that 'sag' and'saga' fast convergence is only guaranteed on features withapproximately the same scale. You can preprocess the data with ascaler from sklearn.preprocessing.All last five solvers support both dense and sparse data. However,only 'sag' and 'saga' supports sparse input when `fit_intercept` isTrue... versionadded:: 0.17Stochastic Average Gradient descent solver... versionadded:: 0.19SAGA solver.random_state : int, RandomState instance or None, optional, default NoneThe seed of the pseudo random number generator to use when shufflingthe data. If int, random_state is the seed used by the random numbergenerator; If RandomState instance, random_state is the random numbergenerator; If None, the random number generator is the RandomStateinstance used by `np.random`. Used when ``solver`` == 'sag'... versionadded:: 0.17*random_state* to support Stochastic Average Gradient.Attributes----------coef_ : array, shape (n_features,) or (n_targets, n_features)Weight vector(s).intercept_ : float | array, shape = (n_targets,)Independent term in decision function. Set to 0.0 if``fit_intercept = False``.n_iter_ : array or None, shape (n_targets,)Actual number of iterations for each target. Available only forsag and lsqr solvers. Other solvers will return None... versionadded:: 0.17See also--------RidgeClassifier, RidgeCV, :class:`sklearn.kernel_ridge.KernelRidge`Examples-------->>> from sklearn.linear_model import Ridge>>> import numpy as np>>> n_samples, n_features = 10, 5>>> np.random.seed(0)>>> y = np.random.randn(n_samples)>>> X = np.random.randn(n_samples, n_features)>>> clf = Ridge(alpha=1.0)>>> clf.fit(X, y) # doctest: +NORMALIZE_WHITESPACERidge(alpha=1.0, copy_X=True, fit_intercept=True, max_iter=None,normalize=False, random_state=None, solver='auto', tol=0.001)"""def __init__(self, alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=None, tol=1e-3, solver="auto", random_state=None):super(Ridge, self).__init__(alpha=alpha, fit_intercept=fit_intercept, normalize=normalize, copy_X=copy_X, max_iter=max_iter, tol=tol, solver=solver, random_state=random_state)def fit(self, X, y, sample_weight=None):"""Fit Ridge regression modelParameters----------X : {array-like, sparse matrix}, shape = [n_samples, n_features]Training datay : array-like, shape = [n_samples] or [n_samples, n_targets]Target valuessample_weight : float or numpy array of shape [n_samples]Individual weights for each sampleReturns-------self : returns an instance of self."""return super(Ridge, self).fit(X, y, sample_weight=sample_weight)

?

?

總結

以上是生活随笔為你收集整理的ML之4PolyR:利用四次多项式回归4PolyR模型+两种正则化(Lasso/Ridge)在披萨数据集上拟合(train)、价格回归预测(test)的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。

主站蜘蛛池模板: 国产精品每日更新 | 一级黄色美女视频 | av中文字幕在线免费观看 | 毛片导航 | 97人人艹 | 青青草原av | 在线日本视频 | 僵尸叔叔在线观看国语高清免费观看 | 午夜快播 | 另类亚洲色图 | gav久久| 午夜国产精品视频 | 亚洲免费精品视频在线观看 | 国产网站一区 | 亚洲无吗av | 国产伦精品一区二区三区精品 | 久久久国产精品免费 | 亚洲爆乳无码一区二区三区 | 看片一区| 日韩av无码一区二区三区不卡 | 女生喷液视频 | 成年人在线观看视频免费 | 污视频网站免费在线观看 | 中文在线字幕 | 91看片在线 | 国产一区网站 | 黄色免费毛片 | 实拍女处破www免费看 | 国产综合影院 | 国产a∨精品一区二区三区仙踪林 | 韩日av一区二区 | 免费av在| 午夜精品一区二区三区在线视频 | 欧洲成人在线视频 | 日韩一级免费观看 | 九九天堂网 | 成片免费观看视频大全 | 久久久久久人妻一区二区三区 | 都市激情综合 | 久久久区 | 午夜精品999 | 午夜激情福利在线 | 精品香蕉一区二区三区 | 爱爱的免费视频 | 亚洲美女久久久 | 免费又黄又爽又色的视频 | 亚洲免费网站 | 午夜理伦三级理论 | 91免费视频观看 | 亚洲精品视频在线 | 久久久国产高清 | 午夜电影福利网 | 中文二区 | 国产精品不卡在线观看 | 国产一二三在线观看 | av在线网站观看 | 青草91| 国产浮力影院 | 午夜免费网 | 一本色道久久综合熟妇 | 另类激情视频 | 国偷自产av一区二区三区 | 人乳videos巨大吃奶 | 欧美肥老妇视频 | 爱情岛亚洲品质自拍极速福利网站 | 黄色不打码视频 | 亚洲日批 | 久久毛片视频 | 一级中国毛片 | 亚洲Av无码成人精品区伊人 | 人妖天堂狠狠ts人妖天堂狠狠 | 日韩美女做爰高潮免费 | 久久中文字幕人妻熟av女蜜柚m | 老司机免费精品视频 | 日本在线不卡一区二区三区 | 午夜污 | 国产精品porn | 高h教授1v1h喂奶 | 自拍偷拍亚洲区 | 国产av成人一区二区三区高清 | 九九热视频免费 | 久久精品在线播放 | 国产东北真实交换多p免视频 | 青青草综合视频 | 成人自拍视频网 | 西欧free性满足hd老熟妇 | 最近免费中文字幕 | 强制高潮抽搐哭叫求饶h | 亚洲奶水xxxx哺乳期 | 国产suv精品一区二区四 | 国产人妻人伦精品1国产盗摄 | 亚洲欧美日本韩国 | 亚洲午夜一区二区三区 | 午夜久久久久久久 | 中文在线字幕免费观看 | 午夜欧美成人 | 黄色三级三级三级 | 日韩一区三区 | 日日躁夜夜躁 |