日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

DL之DNN:利用MultiLayerNetExtend模型【6*100+ReLU+SGD,dropout】对Mnist数据集训练来抑制过拟合

發布時間:2025/3/21 编程问答 15 豆豆
生活随笔 收集整理的這篇文章主要介紹了 DL之DNN:利用MultiLayerNetExtend模型【6*100+ReLU+SGD,dropout】对Mnist数据集训练来抑制过拟合 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

DL之DNN:利用MultiLayerNetExtend模型【6*100+ReLU+SGD,dropout】對Mnist數據集訓練來抑制過擬合

?

?

目錄

輸出結果

設計思路

核心代碼

更多輸出


?

?

?

輸出結果

?

設計思路

190417更新

?

?

?

核心代碼

class RMSprop:def __init__(self, lr=0.01, decay_rate = 0.99):self.lr = lrself.decay_rate = decay_rateself.h = Nonedef update(self, params, grads):if self.h is None:self.h = {}for key, val in params.items():self.h[key] = np.zeros_like(val)for key in params.keys():self.h[key] *= self.decay_rateself.h[key] += (1 - self.decay_rate) * grads[key] * grads[key]params[key] -= self.lr * grads[key] / (np.sqrt(self.h[key]) + 1e-7)class Nesterov:def __init__(self, lr=0.01, momentum=0.9):self.lr = lrself.momentum = momentumself.v = Nonedef update(self, params, grads):if self.v is None:self.v = {}for key, val in params.items():self.v[key] = np.zeros_like(val)for key in params.keys():self.v[key] *= self.momentumself.v[key] -= self.lr * grads[key]params[key] += self.momentum * self.momentum * self.v[key]params[key] -= (1 + self.momentum) * self.lr * grads[key]use_dropout = True dropout_ratio = 0.2network = MultiLayerNetExtend(input_size=784, hidden_size_list=[100, 100, 100, 100, 100, 100],output_size=10, use_dropout=use_dropout, dropout_ration=dropout_ratio) trainer = Trainer(network, x_train, t_train, x_test, t_test, epochs=301, mini_batch_size=100,optimizer='sgd', optimizer_param={'lr': 0.01}, verbose=True) trainer.train() train_acc_list, test_acc_list = trainer.train_acc_list, trainer.test_acc_list

?

?

更多輸出

1、DNN[6*100+ReLU,SGD]: accuracy of not dropout on Minist dataset

train loss:2.3364575765992637 === epoch:1, train acc:0.10333333333333333, test acc:0.1088 === train loss:2.414526554119518 train loss:2.341182306768928 train loss:2.3072782723352496 === epoch:2, train acc:0.09666666666666666, test acc:0.1103 === train loss:2.2600377181768887 train loss:2.263350960525319 train loss:2.2708260374887645……=== epoch:298, train acc:1.0, test acc:0.7709 === train loss:0.00755416896470134 train loss:0.009934657874546435 train loss:0.008421672959852643 === epoch:299, train acc:1.0, test acc:0.7712 === train loss:0.007142981215285884 train loss:0.008205245499586114 train loss:0.007319626293763803 === epoch:300, train acc:1.0, test acc:0.7707 === train loss:0.00752230499930163 train loss:0.008431046288276818 train loss:0.008067532729014863 === epoch:301, train acc:1.0, test acc:0.7707 === train loss:0.010729407851274233 train loss:0.007776889701033221 =============== Final Test Accuracy =============== test acc:0.771

?

2、DNN[6*100+ReLU,SGD]: accuracy of dropout(0.2) on Minist dataset

train loss:2.3064018541384437 === epoch:1, train acc:0.11, test acc:0.1112 === train loss:2.316626942558816 train loss:2.314434337198633 train loss:2.318862771955365 === epoch:2, train acc:0.11333333333333333, test acc:0.1128 === train loss:2.3241989320140717 train loss:2.317694982413387 train loss:2.3079716553885006……=== epoch:298, train acc:0.6266666666666667, test acc:0.5168 === train loss:1.2359381134877185 train loss:1.2833380447791383 train loss:1.2728131428100005 === epoch:299, train acc:0.63, test acc:0.52 === train loss:1.1687601000183936 train loss:1.1435412548991142 train loss:1.3854277174616834 === epoch:300, train acc:0.6333333333333333, test acc:0.5244 === train loss:1.3039470016588997 train loss:1.2359979876607923 train loss:1.2871396654831204 === epoch:301, train acc:0.63, test acc:0.5257 === train loss:1.1690084424502523 train loss:1.1820777530873694 =============== Final Test Accuracy =============== test acc:0.5269

?

相關文章
CSDN:2019.04.09起

?

總結

以上是生活随笔為你收集整理的DL之DNN:利用MultiLayerNetExtend模型【6*100+ReLU+SGD,dropout】对Mnist数据集训练来抑制过拟合的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。

主站蜘蛛池模板: 91欧美在线视频 | 中文字幕日韩一区二区三区 | 热九九精品 | 中日韩免费毛片 | 午夜伦理影院 | 不卡的毛片 | 国产精品综合在线 | 日本a天堂 | 国产欧美一区二区三区国产幕精品 | 欧美日韩美女 | 亚欧成人精品一区二区 | 欧美日韩一区二区在线播放 | 性高湖久久久久久久久aaaaa | 91精品亚洲 | 性生活av | 级毛片 | 涩涩网站在线观看 | 久章操| 成人性做爰aaa片免费看不忠 | 91成人免费 | 成人a免费| 九九自拍 | 少妇一级淫片免费放中国 | 少妇爽 | 九色视频丨porny丨丝袜 | 岛国精品在线 | 亚洲欧美一区二区三区在线 | 日韩av线| 荒野求生21天去码版网站 | 少妇与公做了夜伦理69 | 牛av在线| 国产免费无码一区二区 | 国产一国产二 | 天堂8在线| 国产又大又黄的视频 | 欧洲精品一区二区三区久久 | 91ts人妖另类精品系列 | 91日本精品| 午夜在线一区二区 | 亚洲综合婷婷久久 | 观看毛片 | 女同一区二区三区 | 成人影视免费 | 亚洲综合在线观看视频 | 欧美激情日韩 | 国产视频资源 | 成人欧美一区二区三区黑人动态图 | 老妇女av | 国产激情无码一区二区 | 欧美日韩一区二区三区四区五区 | 免费的av网址 | 青青青在线视频观看 | av自拍一区 | 丁香婷婷综合激情五月色 | 就爱啪啪网 | 中国妇女做爰视频 | 被室友玩屁股(h)男男 | 欧美精品aaa | 青青草免费在线 | 国产精品无人区 | 激情欧美日韩 | 在线视频观看免费 | 在线免费视频 | 日韩精品一二 | www.555国产精品免费 | 日本大胆欧美人术艺术 | 性欢交69精品久久久 | 一级黄色片免费在线观看 | 亚洲aⅴ网站 | 久久看片 | 99久久一区二区 | 99久久综合| 国产精品变态另类虐交 | 日韩精品色哟哟 | 精品国产欧美日韩 | 91麻豆精品在线观看 | 国产精品蜜 | 青草热视频 | 精品人妻一区二区三区三区四区 | 黄色视屏在线 | 欧美久久精品一级黑人c片 1000部多毛熟女毛茸茸 | 久久国产精品久久久久久 | 久久人妻一区二区 | 一本久 | 91久久精品夜夜躁日日躁欧美 | 精品人妻一区二区三区在线视频 | 久久黄色免费网站 | 91高潮大合集爽到抽搐 | 在线免费观看亚洲 | 国产精品无码久久久久一区二区 | 2024男人天堂 | 国产日本视频 | 黄色香港三级三级三级 | 久久黄色大片 | av午夜影院 | 亚洲人成人一区二区在线观看 | 97人妻精品一区二区三区软件 | 亚洲综合社区 | 致命弯道8在线观看免费高清完整 |