日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當(dāng)前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

ML之LiRLasso:基于datasets糖尿病数据集利用LiR和Lasso算法进行(9→1)回归预测(三维图散点图可视化)

發(fā)布時間:2025/3/21 编程问答 31 豆豆
生活随笔 收集整理的這篇文章主要介紹了 ML之LiRLasso:基于datasets糖尿病数据集利用LiR和Lasso算法进行(9→1)回归预测(三维图散点图可视化) 小編覺得挺不錯的,現(xiàn)在分享給大家,幫大家做個參考.

ML之LiR&Lasso:基于datasets糖尿病數(shù)據(jù)集利用LiR和Lasso算法進(jìn)行(9→1)回歸預(yù)測(三維圖散點(diǎn)圖可視化)

?

?

?

目錄

基于datasets糖尿病數(shù)據(jù)集利用LiR和Lasso算法進(jìn)行(9→1)回歸預(yù)測(三維圖散點(diǎn)圖可視化)

設(shè)計(jì)思路

輸出結(jié)果

Lasso核心代碼


?

?

相關(guān)文章
ML之LiR&Lasso:基于datasets糖尿病數(shù)據(jù)集利用LiR和Lasso算法進(jìn)行(9→1)回歸預(yù)測(三維圖散點(diǎn)圖可視化)
ML之LiR&Lasso:基于datasets糖尿病數(shù)據(jù)集利用LiR和Lasso算法進(jìn)行(9→1)回歸預(yù)測(三維圖散點(diǎn)圖可視化)實(shí)現(xiàn)

?

基于datasets糖尿病數(shù)據(jù)集利用LiR和Lasso算法進(jìn)行(9→1)回歸預(yù)測(三維圖散點(diǎn)圖可視化)

設(shè)計(jì)思路

?

?

輸出結(jié)果

Lasso核心代碼

class Lasso Found at: sklearn.linear_model._coordinate_descentclass Lasso(ElasticNet):"""Linear Model trained with L1 prior as regularizer (aka the Lasso)The optimization objective for Lasso is::(1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1Technically the Lasso model is optimizing the same objective function asthe Elastic Net with ``l1_ratio=1.0`` (no L2 penalty).Read more in the :ref:`User Guide <lasso>`.Parameters----------alpha : float, default=1.0Constant that multiplies the L1 term. Defaults to 1.0.``alpha = 0`` is equivalent to an ordinary least square, solvedby the :class:`LinearRegression` object. For numericalreasons, using ``alpha = 0`` with the ``Lasso`` object is not advised.Given this, you should use the :class:`LinearRegression` object.fit_intercept : bool, default=TrueWhether to calculate the intercept for this model. If setto False, no intercept will be used in calculations(i.e. data is expected to be centered).normalize : bool, default=FalseThis parameter is ignored when ``fit_intercept`` is set to False.If True, the regressors X will be normalized before regression bysubtracting the mean and dividing by the l2-norm.If you wish to standardize, please use:class:`sklearn.preprocessing.StandardScaler` before calling ``fit``on an estimator with ``normalize=False``.precompute : 'auto', bool or array-like of shape (n_features, n_features),\default=FalseWhether to use a precomputed Gram matrix to speed upcalculations. If set to ``'auto'`` let us decide. The Grammatrix can also be passed as argument. For sparse inputthis option is always ``True`` to preserve sparsity.copy_X : bool, default=TrueIf ``True``, X will be copied; else, it may be overwritten.max_iter : int, default=1000The maximum number of iterationstol : float, default=1e-4The tolerance for the optimization: if the updates aresmaller than ``tol``, the optimization code checks thedual gap for optimality and continues until it is smallerthan ``tol``.warm_start : bool, default=FalseWhen set to True, reuse the solution of the previous call to fit asinitialization, otherwise, just erase the previous solution.See :term:`the Glossary <warm_start>`.positive : bool, default=FalseWhen set to ``True``, forces the coefficients to be positive.random_state : int, RandomState instance, default=NoneThe seed of the pseudo random number generator that selects a randomfeature to update. Used when ``selection`` == 'random'.Pass an int for reproducible output across multiple function calls.See :term:`Glossary <random_state>`.selection : {'cyclic', 'random'}, default='cyclic'If set to 'random', a random coefficient is updated every iterationrather than looping over features sequentially by default. This(setting to 'random') often leads to significantly faster convergenceespecially when tol is higher than 1e-4.Attributes----------coef_ : ndarray of shape (n_features,) or (n_targets, n_features)parameter vector (w in the cost function formula)sparse_coef_ : sparse matrix of shape (n_features, 1) or \(n_targets, n_features)``sparse_coef_`` is a readonly property derived from ``coef_``intercept_ : float or ndarray of shape (n_targets,)independent term in decision function.n_iter_ : int or list of intnumber of iterations run by the coordinate descent solver to reachthe specified tolerance.Examples-------->>> from sklearn import linear_model>>> clf = linear_model.Lasso(alpha=0.1)>>> clf.fit([[0,0], [1, 1], [2, 2]], [0, 1, 2])Lasso(alpha=0.1)>>> print(clf.coef_)[0.85 0. ]>>> print(clf.intercept_)0.15...See also--------lars_pathlasso_pathLassoLarsLassoCVLassoLarsCVsklearn.decomposition.sparse_encodeNotes-----The algorithm used to fit the model is coordinate descent.To avoid unnecessary memory duplication the X argument of the fit methodshould be directly passed as a Fortran-contiguous numpy array."""path = staticmethod(enet_path)@_deprecate_positional_argsdef __init__(self, alpha=1.0, *, fit_intercept=True, normalize=False, precompute=False, copy_X=True, max_iter=1000, tol=1e-4, warm_start=False, positive=False, random_state=None, selection='cyclic'):super().__init__(alpha=alpha, l1_ratio=1.0, fit_intercept=fit_intercept, normalize=normalize, precompute=precompute, copy_X=copy_X, max_iter=max_iter, tol=tol, warm_start=warm_start, positive=positive, random_state=random_state, selection=selection)############################################################################### # Functions for CV with paths functions

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

總結(jié)

以上是生活随笔為你收集整理的ML之LiRLasso:基于datasets糖尿病数据集利用LiR和Lasso算法进行(9→1)回归预测(三维图散点图可视化)的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網(wǎng)站內(nèi)容還不錯,歡迎將生活随笔推薦給好友。

主站蜘蛛池模板: 国产精品爽爽爽 | 99久久久无码国产精品免费 | 色偷偷中文字幕 | av中文字幕av | 游戏涩涩免费网站 | 久久免费视频一区二区 | 欧美特级视频 | 免费黄色在线播放 | 欧美男女啪啪 | 色婷久久 | 农村老女人av | 精品伦精品一区二区三区视频 | 91超碰免费在线 | 欧美高清日韩 | 激情婷婷色| 99久久99久久精品国产片果冰 | 国产免费又黄又爽又色毛 | 国模无码视频一区 | 国产三级三级三级 | 处破女av一区二区 | 久久精品三级 | 国产18精品乱码免费看 | 久久天堂网 | 一区二区免费在线 | 九色porn | 性感美女在线 | 艳妇臀荡乳欲伦交换gif | 国产精品影院在线观看 | 催眠美妇肉奴系统 | 日韩欧美一区视频 | 国产麻豆视频 | 国产在线视频网 | 日韩av三区 | 欧美一区三区二区在线观看 | 草草影院网址 | 成人午夜视频免费在线观看 | 久久久精品人妻一区二区三区 | 国产色自拍 | 天天射天天射 | 日韩一区二区在线看 | 不卡av在线免费观看 | 高潮爽爆喷水h | 国产经典久久 | 国产精品伦一区二区 | 精品美女 | av无码一区二区三区 | 男人天堂欧美 | а√天堂中文在线资源8 | 免费看美女被靠到爽的视频 | 国产精品久久久久久久久久久久久久久久久久 | yy6080久久| 成人免费在线视频观看 | 免费拍拍拍网站 | 久久久久网 | 久久久黄色网 | ktv做爰视频一区二区 | 成人av免费在线观看 | 久久99免费视频 | 精品欧美一区二区三区成人 | 性欧美一区二区 | 99re这里只有精品在线观看 | 美女色网站 | 国产精品永久在线观看 | 91一区二区三区在线观看 | 宅男在线视频 | 狠狠操影视 | 午夜影院在线播放 | xx性欧美肥妇精品久久久久久 | 天天色综合久久 | 免费看黄色三级 | 天天干夜夜想 | 91一区二区三区在线 | 国产午夜成人久久无码一区二区 | 女女同性女同一区二区三区九色 | 欧美日韩高清丝袜 | 亚洲国产精品美女 | 日韩欧美一区二区三区 | 男人插入女人阴道视频 | 男女插插插网站 | 91蜜臀精品国产自偷在线 | 欧美爽爽爽 | 欧美一区二区三区激情视频 | 2019国产精品 | 91丨porny丨在线 | 六月丁香婷婷综合 | 91久久人澡人人添人人爽欧美 | 丁香社区五月天 | 欧美亚洲国产视频 | 亚洲一区不卡在线 | 午夜在线视频观看 | 视频污在线观看 | 日韩av影音先锋 | 久久亚洲精精品中文字幕早川悠里 | 欧美成人三级在线播放 | 爱爱视频在线播放 | 一区二区在线免费观看视频 | 国产理论视频在线观看 | 久操免费视频 | 中文字幕在线日本 |