使用 Fluentd 和 ElasticSearch Stack 实现 Kubernetes 的集群 Logging
經過一段時間的探索,我們先后完成了Kubernetes集群搭建,DNS、Dashboard、Heapster等插件安裝,集群安全配置,搭建作為Persistent Volume的CephRBD,以及服務更新等探索和實現工作。現在Kubernetes集群層面的Logging需求逐漸浮上水面了。
隨著一些小應用在我們的Kubernetes集群上的部署上線,集群的運行邁上了正軌。但問題隨之而來,那就是如何查找和診斷集群自身的問題以及運行于Pod中應用的問題。日志,沒錯!我們也只能依賴Kubernetes組件以及Pod中應用輸出的日志。不過目前我們僅能通過kubectl logs命令或Kubernetes Dashboard來查看Log。在沒有cluster level logging的情況下,我們需要分別查看各個Pod的日志,操作繁瑣,過程低效。我們迫切地需要為Kubernetes集群搭建一套集群級別的集中日志收集和分析設施。
對于任何基礎設施或后端服務系統,日志都是極其重 要的。對于受Google內部容器管理系統Borg啟發而催生出的Kubernetes項目來說,自然少不了對Logging的支持。在“Logging Overview“中,官方概要介紹了Kubernetes上的幾個層次的Logging方案,并給出Cluster-level logging的參考架構:
Kubernetes還給出了參考實現: – Logging Backend:Elastic Search stack(包括:Kibana) – Logging-agent:fluentd
ElasticSearch stack實現的cluster level logging的一個優勢在于其對Kubernetes集群中的Pod沒有侵入性,Pod無需做任何配合性改動。同時EFK/ELK方案在業內也是相對成熟穩定的。
在本文中,我將為我們的Kubernetes 1.3.7集群安裝ElasticSearch、Fluentd和Kibana。由于1.3.7版本略有些old,EFK能否在其上面run起來,我也是心中未知。能否像《生化危機:終章》那樣有一個完美的結局,我們還需要一步一步“打怪升級”慢慢看。
一、Kubernetes 1.3.7集群的 “漏網之魚”
Kubernetes 1.3.7集群是通過kube-up.sh搭建并初始化的。按照K8s官方文檔有關elasticsearch logging的介紹,在kubernetes/cluster/ubuntu/config-default.sh中,我也發現了下面幾個配置項:
// kubernetes/cluster/ubuntu/config-default.sh # Optional: Enable node logging. ENABLE_NODE_LOGGING=false LOGGING_DESTINATION=${LOGGING_DESTINATION:-elasticsearch}# Optional: When set to true, Elasticsearch and Kibana will be setup as part of the cluster bring up. ENABLE_CLUSTER_LOGGING=false ELASTICSEARCH_LOGGING_REPLICAS=${ELASTICSEARCH_LOGGING_REPLICAS:-1}顯然,當初如果搭建集群伊始時要是知道這些配置的意義,可能那個時候就會將elastic logging集成到集群中了?,F在為時已晚,集群上已經跑了很多應用,無法重新通過kube-up.sh中斷集群運行并安裝elastic logging了。我只能手工進行安裝了!
二、鏡像準備
1.3.7源碼中kubernetes/cluster/addons/fluentd-elasticsearch下的manifest已經比較old了,我們直接使用kubernetes最新源碼中的manifest文件:
k8s.io/kubernetes/cluster/addons/fluentd-elasticsearch$ ls *.yaml es-controller.yaml es-service.yaml fluentd-es-ds.yaml kibana-controller.yaml kibana-service.yaml分析這些yaml,我們需要三個鏡像:
gcr.io/google_containers/fluentd-elasticsearch:1.22gcr.io/google_containers/elasticsearch:v2.4.1-1gcr.io/google_containers/kibana:v4.6.1-1顯然鏡像都在墻外。由于生產環境下的Docker引擎并沒有配置加速器代理,因此我們需要手工下載一下這三個鏡像。我采用的方法是通過另外一臺配置了加速器的機器上的Docker引擎將三個image下載,并重新打tag,上傳到我在hub.docker.com上的賬號下,以elasticsearch:v2.4.1-1為例:
# docker pull gcr.io/google_containers/elasticsearch:v2.4.1-1 # docker tag gcr.io/google_containers/elasticsearch:v2.4.1-1 bigwhite/elasticsearch:v2.4.1-1 # docker push bigwhite/elasticsearch:v2.4.1-1下面是我們在后續安裝過程中真正要使用到的鏡像:
bigwhite/fluentd-elasticsearch:1.22 bigwhite/elasticsearch:v2.4.1-1 bigwhite/kibana:v4.6.1-1三、啟動fluentd
fluentd是以DaemonSet的形式跑在K8s集群上的,這樣k8s可以保證每個k8s cluster node上都會啟動一個fluentd(注意:將image改為上述鏡像地址,如果你配置了加速器,那自然就不必了)。
# kubectl create -f fluentd-es-ds.yaml --record daemonset "fluentd-es-v1.22" created查看daemonset中的Pod的啟動情況,我們發現:
kube-system fluentd-es-v1.22-as3s5 0/1 CrashLoopBackOff 2 43s 172.16.99.6 10.47.136.60 kube-system fluentd-es-v1.22-qz193 0/1 CrashLoopBackOff 2 43s 172.16.57.7 10.46.181.146fluentd Pod啟動失敗,fluentd的日志可以通過/var/log/fluentd.log查看:
# tail -100f /var/log/fluentd.log2017-03-02 02:27:01 +0000 [info]: reading config file path="/etc/td-agent/td-agent.conf" 2017-03-02 02:27:01 +0000 [info]: starting fluentd-0.12.31 2017-03-02 02:27:01 +0000 [info]: gem 'fluent-mixin-config-placeholders' version '0.4.0' 2017-03-02 02:27:01 +0000 [info]: gem 'fluent-mixin-plaintextformatter' version '0.2.6' 2017-03-02 02:27:01 +0000 [info]: gem 'fluent-plugin-docker_metadata_filter' version '0.1.3' 2017-03-02 02:27:01 +0000 [info]: gem 'fluent-plugin-elasticsearch' version '1.5.0' 2017-03-02 02:27:01 +0000 [info]: gem 'fluent-plugin-kafka' version '0.4.1' 2017-03-02 02:27:01 +0000 [info]: gem 'fluent-plugin-kubernetes_metadata_filter' version '0.24.0' 2017-03-02 02:27:01 +0000 [info]: gem 'fluent-plugin-mongo' version '0.7.16' 2017-03-02 02:27:01 +0000 [info]: gem 'fluent-plugin-rewrite-tag-filter' version '1.5.5' 2017-03-02 02:27:01 +0000 [info]: gem 'fluent-plugin-s3' version '0.8.0' 2017-03-02 02:27:01 +0000 [info]: gem 'fluent-plugin-scribe' version '0.10.14' 2017-03-02 02:27:01 +0000 [info]: gem 'fluent-plugin-td' version '0.10.29' 2017-03-02 02:27:01 +0000 [info]: gem 'fluent-plugin-td-monitoring' version '0.2.2' 2017-03-02 02:27:01 +0000 [info]: gem 'fluent-plugin-webhdfs' version '0.4.2' 2017-03-02 02:27:01 +0000 [info]: gem 'fluentd' version '0.12.31' 2017-03-02 02:27:01 +0000 [info]: adding match pattern="fluent.**" type="null" 2017-03-02 02:27:01 +0000 [info]: adding filter pattern="kubernetes.**" type="kubernetes_metadata" 2017-03-02 02:27:02 +0000 [error]: config error file="/etc/td-agent/td-agent.conf" error="Invalid Kubernetes API v1 endpoint https://192.168.3.1:443/api: 401 Unauthorized" 2017-03-02 02:27:02 +0000 [info]: process finished code=256 2017-03-02 02:27:02 +0000 [warn]: process died within 1 second. exit.從上述日志中的error來看:fluentd訪問apiserver secure port(443)出錯了:Unauthorized! 通過分析 cluster/addons/fluentd-elasticsearch/fluentd-es-image/build.sh和td-agent.conf,我們發現是fluentd image中的fluent-plugin-kubernetes_metadata_filter要去訪問API Server以獲取一些kubernetes的metadata信息。不過未做任何特殊配置的fluent-plugin-kubernetes_metadata_filter,我猜測它使用的是kubernetes為Pod傳入的環境變量:KUBERNETES_SERVICE_HOST和KUBERNETES_SERVICE_PORT來得到API Server的訪問信息的。但API Server在secure port上是開啟了安全身份驗證機制的,fluentd直接訪問必然是失敗的。
我們找到了fluent-plugin-kubernetes_metadata_filter項目在github.com上的主頁,在這個頁面上我們看到了fluent-plugin-kubernetes_metadata_filter支持的其他配置,包括:ca_file、client_cert、client_key等,顯然這些字眼非常眼熟。我們需要修改一下fluentd image中td-agent.conf的配置,為fluent-plugin-kubernetes_metadata_filter增加一些配置項,比如:
// td-agent.conf ... ... <filter kubernetes.**>type kubernetes_metadataca_file /srv/kubernetes/ca.crtclient_cert /srv/kubernetes/kubecfg.crtclient_key /srv/kubernetes/kubecfg.key </filter> ... ...這里我不想重新制作image,那么怎么辦呢?Kubernetes提供了ConfigMap這一強大的武器,我們可以將新版td-agent.conf制作成kubernetes的configmap資源,并掛載到fluentd pod的相應位置以替換image中默認的td-agent.conf。
需要注意兩點:
* 在基于td-agent.conf創建configmap資源之前,需要將td-agent.conf中的注釋行都刪掉,否則生成的configmap的內容可能不正確;
* fluentd pod將創建在kube-system下,因此configmap資源也需要創建在kube-system namespace下面,否則kubectl create無法找到對應的configmap。
fluentd-es-ds.yaml也要隨之做一些改動,主要是增加兩個mount: 一個是mount 上面的configmap td-agent-config,另外一個就是mount hostpath:/srv/kubernetes以獲取到相關client端的數字證書:
spec:containers:- name: fluentd-esimage: bigwhite/fluentd-elasticsearch:1.22command:- '/bin/sh'- '-c'- '/usr/sbin/td-agent 2>&1 >> /var/log/fluentd.log'resources:limits:memory: 200Mi#requests:#cpu: 100m#memory: 200MivolumeMounts:- name: varlogmountPath: /var/log- name: varlibdockercontainersmountPath: /var/lib/docker/containersreadOnly: true- name: td-agent-configmountPath: /etc/td-agent- name: tls-filesmountPath: /srv/kubernetesterminationGracePeriodSeconds: 30volumes:- name: varloghostPath:path: /var/log- name: varlibdockercontainershostPath:path: /var/lib/docker/containers- name: td-agent-configconfigMap:name: td-agent-config- name: tls-fileshostPath:path: /srv/kubernetes接下來,我們重新創建fluentd ds,步驟不贅述。這回我們的創建成功了:
kube-system fluentd-es-v1.22-adsrx 1/1 Running 0 1s 172.16.99.6 10.47.136.60 kube-system fluentd-es-v1.22-rpme3 1/1 Running 0 1s 172.16.57.7 10.46.181.146但通過查看/var/log/fluentd.log,我們依然能看到“問題”:
2017-03-02 03:57:58 +0000 [warn]: temporarily failed to flush the buffer. next_retry=2017-03-02 03:57:59 +0000 error_class="Fluent::ElasticsearchOutput::ConnectionFailure" error="Can not reach Elasticsearch cluster ({:host=>\"elasticsearch-logging\", :port=>9200, :scheme=>\"http\"})!" plugin_id="object:3fd99fa857d8"2017-03-02 03:57:58 +0000 [warn]: suppressed same stacktrace 2017-03-02 03:58:00 +0000 [warn]: temporarily failed to flush the buffer. next_retry=2017-03-02 03:58:03 +0000 error_class="Fluent::ElasticsearchOutput::ConnectionFailure" error="Can not reach Elasticsearch cluster ({:host=>\"elasticsearch-logging\", :port=>9200, :scheme=>\"http\"})!" plugin_id="object:3fd99fa857d8" 2017-03-02 03:58:00 +0000 [info]: process finished code=9 2017-03-02 03:58:00 +0000 [error]: fluentd main process died unexpectedly. restarting.由于ElasticSearch logging還未創建,這是連不上elasticsearch所致。
四、啟動elasticsearch
啟動elasticsearch:
# kubectl create -f es-controller.yaml replicationcontroller "elasticsearch-logging-v1" created# kubectl create -f es-service.yaml service "elasticsearch-logging" createdget pods:kube-system elasticsearch-logging-v1-3bzt6 1/1 Running 0 7s 172.16.57.8 10.46.181.146 kube-system elasticsearch-logging-v1-nvbe1 1/1 Running 0 7s 172.16.99.10 10.47.136.60elastic search logging啟動成功后,上述fluentd的fail日志就沒有了!
不過elastic search真的運行ok了么?我們查看一下elasticsearch相關Pod日志:
# kubectl logs -f elasticsearch-logging-v1-3bzt6 -n kube-system F0302 03:59:41.036697 8 elasticsearch_logging_discovery.go:60] kube-system namespace doesn't exist: the server has asked for the client to provide credentials (get namespaces kube-system) goroutine 1 [running]: k8s.io/kubernetes/vendor/github.com/golang/glog.stacks(0x19a8100, 0xc400000000, 0xc2, 0x186) ... ... main.main()elasticsearch_logging_discovery.go:60 +0xb53[2017-03-02 03:59:42,587][INFO ][node ] [elasticsearch-logging-v1-3bzt6] version[2.4.1], pid[16], build[c67dc32/2016-09-27T18:57:55Z] [2017-03-02 03:59:42,588][INFO ][node ] [elasticsearch-logging-v1-3bzt6] initializing ... [2017-03-02 03:59:44,396][INFO ][plugins ] [elasticsearch-logging-v1-3bzt6] modules [reindex, lang-expression, lang-groovy], plugins [], sites [] ... ... [2017-03-02 03:59:44,441][INFO ][env ] [elasticsearch-logging-v1-3bzt6] heap size [1007.3mb], compressed ordinary object pointers [true] [2017-03-02 03:59:48,355][INFO ][node ] [elasticsearch-logging-v1-3bzt6] initialized [2017-03-02 03:59:48,355][INFO ][node ] [elasticsearch-logging-v1-3bzt6] starting ... [2017-03-02 03:59:48,507][INFO ][transport ] [elasticsearch-logging-v1-3bzt6] publish_address {172.16.57.8:9300}, bound_addresses {[::]:9300} [2017-03-02 03:59:48,547][INFO ][discovery ] [elasticsearch-logging-v1-3bzt6] kubernetes-logging/7_f_M2TKRZWOw4NhBc4EqA [2017-03-02 04:00:18,552][WARN ][discovery ] [elasticsearch-logging-v1-3bzt6] waited for 30s and no initial state was set by the discovery [2017-03-02 04:00:18,562][INFO ][http ] [elasticsearch-logging-v1-3bzt6] publish_address {172.16.57.8:9200}, bound_addresses {[::]:9200} [2017-03-02 04:00:18,562][INFO ][node ] [elasticsearch-logging-v1-3bzt6] started [2017-03-02 04:01:15,754][WARN ][discovery.zen.ping.unicast] [elasticsearch-logging-v1-3bzt6] failed to send ping to [{#zen_unicast_1#}{127.0.0.1}{127.0.0.1:9300}] SendRequestTransportException[[][127.0.0.1:9300][internal:discovery/zen/unicast]]; nested: NodeNotConnectedException[[][127.0.0.1:9300] Node not connected]; ... ... Caused by: NodeNotConnectedException[[][127.0.0.1:9300] Node not connected]at org.elasticsearch.transport.netty.NettyTransport.nodeChannel(NettyTransport.java:1141)at org.elasticsearch.transport.netty.NettyTransport.sendRequest(NettyTransport.java:830)at org.elasticsearch.transport.TransportService.sendRequest(TransportService.java:329)... 12 more總結了一下,日志中有兩個錯誤:
- 無法訪問到API Server,這個似乎和fluentd最初的問題一樣;
- elasticsearch兩個節點間互ping失敗。
要想找到這兩個問題的原因,還得回到源頭,去分析elastic search image的組成。
通過cluster/addons/fluentd-elasticsearch/es-image/run.sh文件內容:
/elasticsearch_logging_discovery >> /elasticsearch/config/elasticsearch.ymlchown -R elasticsearch:elasticsearch /data/bin/su -c /elasticsearch/bin/elasticsearch elasticsearch我們了解到image中,其實包含了兩個程序,一個為/elasticsearch_logging_discovery,該程序執行后生成一個配置文件: /elasticsearch/config/elasticsearch.yml。該配置文件后續被另外一個程序:/elasticsearch/bin/elasticsearch使用。
我們查看一下已經運行的docker中的elasticsearch.yml文件內容:
# docker exec 3cad31f6eb08 cat /elasticsearch/config/elasticsearch.yml cluster.name: kubernetes-loggingnode.name: ${NODE_NAME} node.master: ${NODE_MASTER} node.data: ${NODE_DATA}transport.tcp.port: ${TRANSPORT_PORT} http.port: ${HTTP_PORT}path.data: /datanetwork.host: 0.0.0.0discovery.zen.minimum_master_nodes: ${MINIMUM_MASTER_NODES} discovery.zen.ping.multicast.enabled: false這個結果中缺少了一項:
discovery.zen.ping.unicast.hosts: ["172.30.0.11", "172.30.192.15"]這也是導致第二個問題的原因。綜上,elasticsearch logging的錯誤其實都是由于/elasticsearch_logging_discovery無法訪問API Server導致 /elasticsearch/config/elasticsearch.yml沒有被正確生成造成的,我們就來解決這個問題。
我查看了一下/elasticsearch_logging_discovery的源碼,elasticsearch_logging_discovery是一個典型通過client-go通過service account訪問API Server的程序,很顯然這就是我在《在Kubernetes Pod中使用Service Account訪問API Server》一文中提到的那個問題:默認的service account不好用。
解決方法:在kube-system namespace下創建一個新的service account資源,并在es-controller.yaml中顯式使用該新創建的service account。
創建一個新的serviceaccount在kube-system namespace下:
//serviceaccount.yaml apiVersion: v1 kind: ServiceAccount metadata:name: k8s-efk# kubectl create -f serviceaccount.yaml -n kube-system serviceaccount "k8s-efk" created# kubectl get serviceaccount -n kube-system NAME SECRETS AGE default 1 139d k8s-efk 1 17s在es-controller.yaml中,使用service account “k8s-efk”:
//es-controller.yaml ... ... spec:replicas: 2selector:k8s-app: elasticsearch-loggingversion: v1template:metadata:labels:k8s-app: elasticsearch-loggingversion: v1kubernetes.io/cluster-service: "true"spec:serviceAccount: k8s-efkcontainers: ... ...重新創建elasticsearch logging service后,我們再來查看elasticsearch-logging pod的日志:
# kubectl logs -f elasticsearch-logging-v1-dklui -n kube-system [2017-03-02 08:26:46,500][INFO ][node ] [elasticsearch-logging-v1-dklui] version[2.4.1], pid[14], build[c67dc32/2016-09-27T18:57:55Z] [2017-03-02 08:26:46,504][INFO ][node ] [elasticsearch-logging-v1-dklui] initializing ... [2017-03-02 08:26:47,984][INFO ][plugins ] [elasticsearch-logging-v1-dklui] modules [reindex, lang-expression, lang-groovy], plugins [], sites [] [2017-03-02 08:26:48,073][INFO ][env ] [elasticsearch-logging-v1-dklui] using [1] data paths, mounts [[/data (/dev/vda1)]], net usable_space [16.9gb], net total_space [39.2gb], spins? [possibly], types [ext4] [2017-03-02 08:26:48,073][INFO ][env ] [elasticsearch-logging-v1-dklui] heap size [1007.3mb], compressed ordinary object pointers [true] [2017-03-02 08:26:53,241][INFO ][node ] [elasticsearch-logging-v1-dklui] initialized [2017-03-02 08:26:53,241][INFO ][node ] [elasticsearch-logging-v1-dklui] starting ... [2017-03-02 08:26:53,593][INFO ][transport ] [elasticsearch-logging-v1-dklui] publish_address {172.16.57.8:9300}, bound_addresses {[::]:9300} [2017-03-02 08:26:53,651][INFO ][discovery ] [elasticsearch-logging-v1-dklui] kubernetes-logging/Ky_OuYqMRkm_918aHRtuLg [2017-03-02 08:26:56,736][INFO ][cluster.service ] [elasticsearch-logging-v1-dklui] new_master {elasticsearch-logging-v1-dklui}{Ky_OuYqMRkm_918aHRtuLg}{172.16.57.8}{172.16.57.8:9300}{master=true}, added {{elasticsearch-logging-v1-vjxm3}{cbzgrfZATyWkHfQYHZhs7Q}{172.16.99.10}{172.16.99.10:9300}{master=true},}, reason: zen-disco-join(elected_as_master, [1] joins received) [2017-03-02 08:26:56,955][INFO ][http ] [elasticsearch-logging-v1-dklui] publish_address {172.16.57.8:9200}, bound_addresses {[::]:9200} [2017-03-02 08:26:56,956][INFO ][node ] [elasticsearch-logging-v1-dklui] started [2017-03-02 08:26:57,157][INFO ][gateway ] [elasticsearch-logging-v1-dklui] recovered [0] indices into cluster_state [2017-03-02 08:27:05,378][INFO ][cluster.metadata ] [elasticsearch-logging-v1-dklui] [logstash-2017.03.02] creating index, cause [auto(bulk api)], templates [], shards [5]/[1], mappings [] [2017-03-02 08:27:06,360][INFO ][cluster.metadata ] [elasticsearch-logging-v1-dklui] [logstash-2017.03.01] creating index, cause [auto(bulk api)], templates [], shards [5]/[1], mappings [] [2017-03-02 08:27:07,163][INFO ][cluster.routing.allocation] [elasticsearch-logging-v1-dklui] Cluster health status changed from [RED] to [YELLOW] (reason: [shards started [[logstash-2017.03.01][3], [logstash-2017.03.01][3]] ...]). [2017-03-02 08:27:07,354][INFO ][cluster.metadata ] [elasticsearch-logging-v1-dklui] [logstash-2017.03.02] create_mapping [fluentd] [2017-03-02 08:27:07,988][INFO ][cluster.metadata ] [elasticsearch-logging-v1-dklui] [logstash-2017.03.01] create_mapping [fluentd] [2017-03-02 08:27:09,578][INFO ][cluster.routing.allocation] [elasticsearch-logging-v1-dklui] Cluster health status changed from [YELLOW] to [GREEN] (reason: [shards started [[logstash-2017.03.02][4]] ...]).elasticsearch logging啟動運行ok!
五、啟動kibana
有了elasticsearch logging的“前車之鑒”,這次我們也把上面新創建的serviceaccount:k8s-efk顯式賦值給kibana-controller.yaml:
//kibana-controller.yaml ... ... spec:serviceAccount: k8s-efkcontainers:- name: kibana-loggingimage: bigwhite/kibana:v4.6.1-1resources:# keep request = limit to keep this container in guaranteed classlimits:cpu: 100m#requests:# cpu: 100menv:- name: "ELASTICSEARCH_URL"value: "http://elasticsearch-logging:9200"- name: "KIBANA_BASE_URL"value: "/api/v1/proxy/namespaces/kube-system/services/kibana-logging"ports:- containerPort: 5601name: uiprotocol: TCP ... ...啟動kibana,并觀察pod日志:
# kubectl create -f kibana-controller.yaml # kubectl create -f kibana-service.yaml # kubectl logs -f kibana-logging-3604961973-jby53 -n kube-system ELASTICSEARCH_URL=http://elasticsearch-logging:9200 server.basePath: /api/v1/proxy/namespaces/kube-system/services/kibana-logging {"type":"log","@timestamp":"2017-03-02T08:30:15Z","tags":["info","optimize"],"pid":6,"message":"Optimizing and caching bundles for kibana and statusPage. This may take a few minutes"}kibana緩存著實需要一段時間,請耐心等待!可能是幾分鐘。之后你將會看到如下日志:
# kubectl logs -f kibana-logging-3604961973-jby53 -n kube-system ELASTICSEARCH_URL=http://elasticsearch-logging:9200 server.basePath: /api/v1/proxy/namespaces/kube-system/services/kibana-logging {"type":"log","@timestamp":"2017-03-02T08:30:15Z","tags":["info","optimize"],"pid":6,"message":"Optimizing and caching bundles for kibana and statusPage. This may take a few minutes"} {"type":"log","@timestamp":"2017-03-02T08:40:04Z","tags":["info","optimize"],"pid":6,"message":"Optimization of bundles for kibana and statusPage complete in 588.60 seconds"} {"type":"log","@timestamp":"2017-03-02T08:40:04Z","tags":["status","plugin:kibana@1.0.0","info"],"pid":6,"state":"green","message":"Status changed from uninitialized to green - Ready","prevState":"uninitialized","prevMsg":"uninitialized"} {"type":"log","@timestamp":"2017-03-02T08:40:05Z","tags":["status","plugin:elasticsearch@1.0.0","info"],"pid":6,"state":"yellow","message":"Status changed from uninitialized to yellow - Waiting for Elasticsearch","prevState":"uninitialized","prevMsg":"uninitialized"} {"type":"log","@timestamp":"2017-03-02T08:40:05Z","tags":["status","plugin:kbn_vislib_vis_types@1.0.0","info"],"pid":6,"state":"green","message":"Status changed from uninitialized to green - Ready","prevState":"uninitialized","prevMsg":"uninitialized"} {"type":"log","@timestamp":"2017-03-02T08:40:05Z","tags":["status","plugin:markdown_vis@1.0.0","info"],"pid":6,"state":"green","message":"Status changed from uninitialized to green - Ready","prevState":"uninitialized","prevMsg":"uninitialized"} {"type":"log","@timestamp":"2017-03-02T08:40:05Z","tags":["status","plugin:metric_vis@1.0.0","info"],"pid":6,"state":"green","message":"Status changed from uninitialized to green - Ready","prevState":"uninitialized","prevMsg":"uninitialized"} {"type":"log","@timestamp":"2017-03-02T08:40:06Z","tags":["status","plugin:spyModes@1.0.0","info"],"pid":6,"state":"green","message":"Status changed from uninitialized to green - Ready","prevState":"uninitialized","prevMsg":"uninitialized"} {"type":"log","@timestamp":"2017-03-02T08:40:06Z","tags":["status","plugin:statusPage@1.0.0","info"],"pid":6,"state":"green","message":"Status changed from uninitialized to green - Ready","prevState":"uninitialized","prevMsg":"uninitialized"} {"type":"log","@timestamp":"2017-03-02T08:40:06Z","tags":["status","plugin:table_vis@1.0.0","info"],"pid":6,"state":"green","message":"Status changed from uninitialized to green - Ready","prevState":"uninitialized","prevMsg":"uninitialized"} {"type":"log","@timestamp":"2017-03-02T08:40:06Z","tags":["listening","info"],"pid":6,"message":"Server running at http://0.0.0.0:5601"} {"type":"log","@timestamp":"2017-03-02T08:40:11Z","tags":["status","plugin:elasticsearch@1.0.0","info"],"pid":6,"state":"yellow","message":"Status changed from yellow to yellow - No existing Kibana index found","prevState":"yellow","prevMsg":"Waiting for Elasticsearch"} {"type":"log","@timestamp":"2017-03-02T08:40:14Z","tags":["status","plugin:elasticsearch@1.0.0","info"],"pid":6,"state":"green","message":"Status changed from yellow to green - Kibana index ready","prevState":"yellow","prevMsg":"No existing Kibana index found"}接下來,通過瀏覽器訪問下面地址就可以訪問kibana的web頁面了,注意:Kinaba的web頁面加載也需要一段時間。
https://{API Server external IP}:{API Server secure port}/api/v1/proxy/namespaces/kube-system/services/kibana-logging/app/kibana#/settings/indices/下面是創建一個index(相當于mysql中的一個database)頁面:
取消“Index contains time-based events”,然后點擊“Create”即可創建一個Index。
點擊頁面上的”Setting” -> “Status”,可以查看當前elasticsearch logging的整體狀態,如果一切ok,你將會看到下圖這樣的頁面:
創建Index后,可以在Discover下看到ElasticSearch logging中匯聚的日志:
六、小結
以上就是在Kubernetes 1.3.7集群上安裝Fluentd和ElasticSearch stack,實現kubernetes cluster level logging的過程。在使用kubeadm安裝的Kubernetes 1.5.1環境下安裝這些,則基本不會遇到上述這些問題。
另外ElasticSearch logging默認掛載的volume是emptyDir,實驗用可以。但要部署在生產環境,必須換成Persistent Volume,比如:CephRBD。
本文轉自掘金-使用 Fluentd 和 ElasticSearch Stack 實現 Kubernetes 的集群 Logging
總結
以上是生活随笔為你收集整理的使用 Fluentd 和 ElasticSearch Stack 实现 Kubernetes 的集群 Logging的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: Eos离线密钥生成的PHP代码
- 下一篇: 记一例 ORA-00904:标识符无效