日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

Machine Learning week 2 quiz: Linear Regression with Multiple Variables

發(fā)布時間:2025/3/21 编程问答 23 豆豆
生活随笔 收集整理的這篇文章主要介紹了 Machine Learning week 2 quiz: Linear Regression with Multiple Variables 小編覺得挺不錯的,現(xiàn)在分享給大家,幫大家做個參考.

Linear Regression with Multiple Variables

5?試題

1.?

Suppose?m=4 students have taken some class, and the class had a midterm exam and a final exam. You have collected a dataset of their scores on the two exams, which is as follows:

midterm exam (midterm exam)2 final exam
89 7921 96
72 5184 74
94 8836 87
69 4761 78

You'd like to use polynomial regression to predict a student's final exam score from their midterm exam score. Concretely, suppose you want to fit a model of the form?hθ(x)=θ0+θ1x1+θ2x2, where?x1?is the midterm score and?x2?is (midterm score)2. Further, you plan to use both feature scaling (dividing by the "max-min", or range, of a feature) and mean normalization.

What is the normalized feature?x(1)1? (Hint: midterm = 89, final = 96 is training example 1.) Please round off your answer to two decimal places and enter in the text box below.

2.?

You run gradient descent for 15 iterations

with?α=0.3?and compute?J(θ)?after each

iteration. You find that the value of?J(θ)?increases?over

time. Based on this, which of the following conclusions seems

most plausible?

Rather than use the current value of?α, it'd be more promising to try a smaller value of?α?(say?α=0.1).

Rather than use the current value of?α, it'd be more promising to try a larger value of?α(say?α=1.0).

α=0.3?is an effective choice of learning rate.

3.?

Suppose you have?m=23?training examples with?n=5?features (excluding the additional all-ones feature for the intercept term, which you should add). The normal equation is?θ=(XTX)?1XTy. For the given values of?m?and?n, what are the dimensions of?θ,?X, and?y?in this equation?

X?is?23×6,?y?is?23×6,?θ?is?6×6

X?is?23×5,?y?is?23×1,?θ?is?5×5

X?is?23×6,?y?is?23×1,?θ?is?6×1

X?is?23×5,?y?is?23×1,?θ?is?5×1

4.?

Suppose you have a dataset with?m=1000000?examples and?n=200000?features for each example. You want to use multivariate linear regression to fit the parameters?θ?to our data. Should you prefer gradient descent or the normal equation?

The normal equation, since gradient descent might be unable to find the optimal?θ.

The normal equation, since it provides an efficient way to directly find the solution.

Gradient descent, since it will always converge to the optimal?θ.

Gradient descent, since?(XTX)?1?will be very slow to compute in the normal equation.

5.?

Which of the following are reasons for using feature scaling?

It prevents the matrix?XTX?(used in the normal equation) from being non-invertable (singular/degenerate).

It speeds up gradient descent by making it require fewer iterations to get to a good solution.

It is necessary to prevent the normal equation from getting stuck in local optima.

It speeds up gradient descent by making each iteration of gradient descent less expensive to compute.


總結(jié)

以上是生活随笔為你收集整理的Machine Learning week 2 quiz: Linear Regression with Multiple Variables的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網(wǎng)站內(nèi)容還不錯,歡迎將生活随笔推薦給好友。