日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 >

[caffe]深度学习之图像分类模型AlexNet解读

發布時間:2025/3/21 23 豆豆
生活随笔 收集整理的這篇文章主要介紹了 [caffe]深度学习之图像分类模型AlexNet解读 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

在imagenet上的圖像分類challenge上Alex提出的alexnet網絡結構模型贏得了2012屆的冠軍。要研究CNN類型DL網絡模型在圖像分類上的應用,就逃不開研究alexnet,這是CNN在圖像分類上的經典模型(DL火起來之后)。

在DL開源實現caffe的model樣例中,它也給出了alexnet的復現,具體網絡配置文件如下https://github.com/BVLC/caffe/blob/master/models/bvlc_reference_caffenet/train_val.prototxt:

接下來本文將一步步對該網絡配置結構中各個層進行詳細的解讀(訓練階段):

1. conv1階段DFD(data flow diagram):


2. conv2階段DFD(data flow diagram):


3. conv3階段DFD(data flow diagram):


4. conv4階段DFD(data flow diagram):


5. conv5階段DFD(data flow diagram):


6. fc6階段DFD(data flow diagram):


7. fc7階段DFD(data flow diagram):


8. fc8階段DFD(data flow diagram):



各種layer的operation更多解釋可以參考http://caffe.berkeleyvision.org/tutorial/layers.html

從計算該模型的數據流過程中,該模型參數大概5kw+。

caffe的輸出中也有包含這塊的內容日志,詳情如下:

[cpp]?view plain?copy ?print?
  • I0721?10:38:15.326920??4692?net.cpp:125]?Top?shape:?256?3?227?227?(39574272)??
  • I0721?10:38:15.326971??4692?net.cpp:125]?Top?shape:?256?1?1?1?(256)??
  • I0721?10:38:15.326982??4692?net.cpp:156]?data?does?not?need?backward?computation.??
  • I0721?10:38:15.327003??4692?net.cpp:74]?Creating?Layer?conv1??
  • I0721?10:38:15.327011??4692?net.cpp:84]?conv1?<-?data??
  • I0721?10:38:15.327033??4692?net.cpp:110]?conv1?->?conv1??
  • I0721?10:38:16.721956??4692?net.cpp:125]?Top?shape:?256?96?55?55?(74342400)??
  • I0721?10:38:16.722030??4692?net.cpp:151]?conv1?needs?backward?computation.??
  • I0721?10:38:16.722059??4692?net.cpp:74]?Creating?Layer?relu1??
  • I0721?10:38:16.722070??4692?net.cpp:84]?relu1?<-?conv1??
  • I0721?10:38:16.722082??4692?net.cpp:98]?relu1?->?conv1?(in-place)??
  • I0721?10:38:16.722096??4692?net.cpp:125]?Top?shape:?256?96?55?55?(74342400)??
  • I0721?10:38:16.722105??4692?net.cpp:151]?relu1?needs?backward?computation.??
  • I0721?10:38:16.722116??4692?net.cpp:74]?Creating?Layer?pool1??
  • I0721?10:38:16.722125??4692?net.cpp:84]?pool1?<-?conv1??
  • I0721?10:38:16.722133??4692?net.cpp:110]?pool1?->?pool1??
  • I0721?10:38:16.722167??4692?net.cpp:125]?Top?shape:?256?96?27?27?(17915904)??
  • I0721?10:38:16.722187??4692?net.cpp:151]?pool1?needs?backward?computation.??
  • I0721?10:38:16.722205??4692?net.cpp:74]?Creating?Layer?norm1??
  • I0721?10:38:16.722221??4692?net.cpp:84]?norm1?<-?pool1??
  • I0721?10:38:16.722234??4692?net.cpp:110]?norm1?->?norm1??
  • I0721?10:38:16.722251??4692?net.cpp:125]?Top?shape:?256?96?27?27?(17915904)??
  • I0721?10:38:16.722260??4692?net.cpp:151]?norm1?needs?backward?computation.??
  • I0721?10:38:16.722272??4692?net.cpp:74]?Creating?Layer?conv2??
  • I0721?10:38:16.722280??4692?net.cpp:84]?conv2?<-?norm1??
  • I0721?10:38:16.722290??4692?net.cpp:110]?conv2?->?conv2??
  • I0721?10:38:16.725225??4692?net.cpp:125]?Top?shape:?256?256?27?27?(47775744)??
  • I0721?10:38:16.725242??4692?net.cpp:151]?conv2?needs?backward?computation.??
  • I0721?10:38:16.725253??4692?net.cpp:74]?Creating?Layer?relu2??
  • I0721?10:38:16.725261??4692?net.cpp:84]?relu2?<-?conv2??
  • I0721?10:38:16.725270??4692?net.cpp:98]?relu2?->?conv2?(in-place)??
  • I0721?10:38:16.725280??4692?net.cpp:125]?Top?shape:?256?256?27?27?(47775744)??
  • I0721?10:38:16.725288??4692?net.cpp:151]?relu2?needs?backward?computation.??
  • I0721?10:38:16.725298??4692?net.cpp:74]?Creating?Layer?pool2??
  • I0721?10:38:16.725307??4692?net.cpp:84]?pool2?<-?conv2??
  • I0721?10:38:16.725317??4692?net.cpp:110]?pool2?->?pool2??
  • I0721?10:38:16.725329??4692?net.cpp:125]?Top?shape:?256?256?13?13?(11075584)??
  • I0721?10:38:16.725338??4692?net.cpp:151]?pool2?needs?backward?computation.??
  • I0721?10:38:16.725358??4692?net.cpp:74]?Creating?Layer?norm2??
  • I0721?10:38:16.725368??4692?net.cpp:84]?norm2?<-?pool2??
  • I0721?10:38:16.725378??4692?net.cpp:110]?norm2?->?norm2??
  • I0721?10:38:16.725389??4692?net.cpp:125]?Top?shape:?256?256?13?13?(11075584)??
  • I0721?10:38:16.725399??4692?net.cpp:151]?norm2?needs?backward?computation.??
  • I0721?10:38:16.725409??4692?net.cpp:74]?Creating?Layer?conv3??
  • I0721?10:38:16.725419??4692?net.cpp:84]?conv3?<-?norm2??
  • I0721?10:38:16.725427??4692?net.cpp:110]?conv3?->?conv3??
  • I0721?10:38:16.735193??4692?net.cpp:125]?Top?shape:?256?384?13?13?(16613376)??
  • I0721?10:38:16.735213??4692?net.cpp:151]?conv3?needs?backward?computation.??
  • I0721?10:38:16.735224??4692?net.cpp:74]?Creating?Layer?relu3??
  • I0721?10:38:16.735234??4692?net.cpp:84]?relu3?<-?conv3??
  • I0721?10:38:16.735242??4692?net.cpp:98]?relu3?->?conv3?(in-place)??
  • I0721?10:38:16.735250??4692?net.cpp:125]?Top?shape:?256?384?13?13?(16613376)??
  • I0721?10:38:16.735258??4692?net.cpp:151]?relu3?needs?backward?computation.??
  • I0721?10:38:16.735302??4692?net.cpp:74]?Creating?Layer?conv4??
  • I0721?10:38:16.735312??4692?net.cpp:84]?conv4?<-?conv3??
  • I0721?10:38:16.735321??4692?net.cpp:110]?conv4?->?conv4??
  • I0721?10:38:16.743952??4692?net.cpp:125]?Top?shape:?256?384?13?13?(16613376)??
  • I0721?10:38:16.743988??4692?net.cpp:151]?conv4?needs?backward?computation.??
  • I0721?10:38:16.744000??4692?net.cpp:74]?Creating?Layer?relu4??
  • I0721?10:38:16.744010??4692?net.cpp:84]?relu4?<-?conv4??
  • I0721?10:38:16.744020??4692?net.cpp:98]?relu4?->?conv4?(in-place)??
  • I0721?10:38:16.744030??4692?net.cpp:125]?Top?shape:?256?384?13?13?(16613376)??
  • I0721?10:38:16.744038??4692?net.cpp:151]?relu4?needs?backward?computation.??
  • I0721?10:38:16.744050??4692?net.cpp:74]?Creating?Layer?conv5??
  • I0721?10:38:16.744057??4692?net.cpp:84]?conv5?<-?conv4??
  • I0721?10:38:16.744067??4692?net.cpp:110]?conv5?->?conv5??
  • I0721?10:38:16.748935??4692?net.cpp:125]?Top?shape:?256?256?13?13?(11075584)??
  • I0721?10:38:16.748955??4692?net.cpp:151]?conv5?needs?backward?computation.??
  • I0721?10:38:16.748965??4692?net.cpp:74]?Creating?Layer?relu5??
  • I0721?10:38:16.748975??4692?net.cpp:84]?relu5?<-?conv5??
  • I0721?10:38:16.748983??4692?net.cpp:98]?relu5?->?conv5?(in-place)??
  • I0721?10:38:16.748998??4692?net.cpp:125]?Top?shape:?256?256?13?13?(11075584)??
  • I0721?10:38:16.749011??4692?net.cpp:151]?relu5?needs?backward?computation.??
  • I0721?10:38:16.749022??4692?net.cpp:74]?Creating?Layer?pool5??
  • I0721?10:38:16.749030??4692?net.cpp:84]?pool5?<-?conv5??
  • I0721?10:38:16.749039??4692?net.cpp:110]?pool5?->?pool5??
  • I0721?10:38:16.749050??4692?net.cpp:125]?Top?shape:?256?256?6?6?(2359296)??
  • I0721?10:38:16.749058??4692?net.cpp:151]?pool5?needs?backward?computation.??
  • I0721?10:38:16.749074??4692?net.cpp:74]?Creating?Layer?fc6??
  • I0721?10:38:16.749083??4692?net.cpp:84]?fc6?<-?pool5??
  • I0721?10:38:16.749091??4692?net.cpp:110]?fc6?->?fc6??
  • I0721?10:38:17.160079??4692?net.cpp:125]?Top?shape:?256?4096?1?1?(1048576)??
  • I0721?10:38:17.160148??4692?net.cpp:151]?fc6?needs?backward?computation.??
  • I0721?10:38:17.160166??4692?net.cpp:74]?Creating?Layer?relu6??
  • I0721?10:38:17.160177??4692?net.cpp:84]?relu6?<-?fc6??
  • I0721?10:38:17.160190??4692?net.cpp:98]?relu6?->?fc6?(in-place)??
  • I0721?10:38:17.160202??4692?net.cpp:125]?Top?shape:?256?4096?1?1?(1048576)??
  • I0721?10:38:17.160212??4692?net.cpp:151]?relu6?needs?backward?computation.??
  • I0721?10:38:17.160222??4692?net.cpp:74]?Creating?Layer?drop6??
  • I0721?10:38:17.160230??4692?net.cpp:84]?drop6?<-?fc6??
  • I0721?10:38:17.160238??4692?net.cpp:98]?drop6?->?fc6?(in-place)??
  • I0721?10:38:17.160258??4692?net.cpp:125]?Top?shape:?256?4096?1?1?(1048576)??
  • I0721?10:38:17.160265??4692?net.cpp:151]?drop6?needs?backward?computation.??
  • I0721?10:38:17.160277??4692?net.cpp:74]?Creating?Layer?fc7??
  • I0721?10:38:17.160286??4692?net.cpp:84]?fc7?<-?fc6??
  • I0721?10:38:17.160295??4692?net.cpp:110]?fc7?->?fc7??
  • I0721?10:38:17.342094??4692?net.cpp:125]?Top?shape:?256?4096?1?1?(1048576)??
  • I0721?10:38:17.342157??4692?net.cpp:151]?fc7?needs?backward?computation.??
  • I0721?10:38:17.342175??4692?net.cpp:74]?Creating?Layer?relu7??
  • I0721?10:38:17.342185??4692?net.cpp:84]?relu7?<-?fc7??
  • I0721?10:38:17.342198??4692?net.cpp:98]?relu7?->?fc7?(in-place)??
  • I0721?10:38:17.342208??4692?net.cpp:125]?Top?shape:?256?4096?1?1?(1048576)??
  • I0721?10:38:17.342217??4692?net.cpp:151]?relu7?needs?backward?computation.??
  • I0721?10:38:17.342228??4692?net.cpp:74]?Creating?Layer?drop7??
  • I0721?10:38:17.342236??4692?net.cpp:84]?drop7?<-?fc7??
  • I0721?10:38:17.342245??4692?net.cpp:98]?drop7?->?fc7?(in-place)??
  • I0721?10:38:17.342254??4692?net.cpp:125]?Top?shape:?256?4096?1?1?(1048576)??
  • I0721?10:38:17.342262??4692?net.cpp:151]?drop7?needs?backward?computation.??
  • I0721?10:38:17.342274??4692?net.cpp:74]?Creating?Layer?fc8??
  • I0721?10:38:17.342283??4692?net.cpp:84]?fc8?<-?fc7??
  • I0721?10:38:17.342291??4692?net.cpp:110]?fc8?->?fc8??
  • I0721?10:38:17.343199??4692?net.cpp:125]?Top?shape:?256?22?1?1?(5632)??
  • I0721?10:38:17.343214??4692?net.cpp:151]?fc8?needs?backward?computation.??
  • I0721?10:38:17.343231??4692?net.cpp:74]?Creating?Layer?loss??
  • I0721?10:38:17.343240??4692?net.cpp:84]?loss?<-?fc8??
  • I0721?10:38:17.343250??4692?net.cpp:84]?loss?<-?label??
  • I0721?10:38:17.343264??4692?net.cpp:151]?loss?needs?backward?computation.??
  • I0721?10:38:17.343305??4692?net.cpp:173]?Collecting?Learning?Rate?and?Weight?Decay.??
  • I0721?10:38:17.343327??4692?net.cpp:166]?Network?initialization?done.??
  • I0721?10:38:17.343335??4692?net.cpp:167]?Memory?required?for?Data?1073760256 ?

  • from:?http://blog.csdn.net/sunbaigui/article/details/39938097

    總結

    以上是生活随笔為你收集整理的[caffe]深度学习之图像分类模型AlexNet解读的全部內容,希望文章能夠幫你解決所遇到的問題。

    如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。