日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當(dāng)前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

7 Steps for becoming Deep Learning Expert

發(fā)布時間:2025/3/21 编程问答 26 豆豆
生活随笔 收集整理的這篇文章主要介紹了 7 Steps for becoming Deep Learning Expert 小編覺得挺不錯的,現(xiàn)在分享給大家,幫大家做個參考.

轉(zhuǎn)載自:

7 Steps for becoming Deep Learning Expert | Ankit Agarwal | 領(lǐng)英
https://www.linkedin.com/pulse/7-steps-becoming-deep-learning-expert-ankit-agarwal

One of the frequent questions we get about our work is - "Where to start learning Deep Learning?” Lot of courses and tutorials are available freely online, but it gets overwhelming for the uninitiated. We have curated a few resources below which may help you begin your trip down the Deep Learning rabbit hole.

1. The first step is to understand Machine learning, the best resource for which is?Andrew Ngs (Ex-Google, Stanford, Baidu), an online course at coursera. Going through the lectures are enough to understand the basics, but assignments take your understanding to another level.

2. Next step is to develop intuition for Neural Networks. So go forth, write your?first Neural Network?and play with it.

3. Understanding Neural networks are important, but simple Neural Networks not sufficient to solve the most interesting problems. A variation - Convolution Neural Networks work really well for visual tasks. Standord lecture notes and slides on the same are here:CS231n Convolutional Neural Networks for Visual Recognition(notes), and?CS231n: Convolutional Neural Networks for Visual Recognition?(lecture slides). Also?here?and?here?are two great videos on CNNs.

4. Next step is to get following for running your first CNN on your own PC.

  • Buy?GPU?and install?CUDA?
  • Install?Caffe?and?its GUI wrapper?Digit?
  • Install?Boinc?(This will not help you in Deep Learning, but would let other?researchers use your GPU in its idle time, for Science)?

5. Digit provides few algorithms such as -?Lenet?for character recognition and?Googlenet?for image classification algorithms. You need to download?dataset for Lenet?and?dataset for Googlenet? to run these algorithms. You may modify the algorithms and try other fun visual image recognition tasks, like we did?here.

6. For various Natural Language Processing (NLP) tasks, RNNs (Recurrent Neural Networks) are really the best. The best place to learn about RNNs is the?Stanford lecture videos here. You can download?Tensorflow?and use it for building RNNs.

7. Now go ahead and choose a Deep Learning problem?ranging from facial detection to speech recognition to a self-driving car, and solve it.

If you are through?with all the above steps - Congratulations! Go ahead and apply for a position at Google, Baidu, Microsoft, Facebook or Amazon.?Not many are able to achieve, what you just did. But, if you want to engage in cutting edge innovation with Deep Learning and work with us, please do connect.


《新程序員》:云原生和全面數(shù)字化實踐50位技術(shù)專家共同創(chuàng)作,文字、視頻、音頻交互閱讀

總結(jié)

以上是生活随笔為你收集整理的7 Steps for becoming Deep Learning Expert的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網(wǎng)站內(nèi)容還不錯,歡迎將生活随笔推薦給好友。

主站蜘蛛池模板: 男人的天堂在线视频 | 97久久精品人人澡人人爽 | 床戏高潮做进去大尺度视频网站 | 日韩欧美三级在线 | 久久久久国产一区二区 | 爱豆国产剧免费观看大全剧集 | 国产视频在线观看视频 | 中文字幕人妻互换av久久 | 男女国产视频 | 一本到高清 | 欧美精品在线第一页 | 欧美一二三区 | 亚洲天堂五月 | 丁香一区二区三区 | 先锋资源一区二区 | 极品销魂美女一区二区 | 亚洲久久久久久 | 精品少妇一区二区三区 | 免费激情网址 | 91丝袜国产在线观看 | 狼干综合| 在线免费观看www | 无套内谢少妇毛片 | 午夜激情一区二区 | 国模无码国产精品视频 | 美女少妇毛片 | 99久久精品国产一区二区成人 | 少妇搡bbbb搡bbb搡澳门 | 好吊一区二区三区视频 | 欧美 日韩 国产 中文 | 久久久久久久久免费 | 色婷婷免费视频 | 穿扒开跪着折磨屁股视频 | 久久免费福利 | 乱子伦一区二区三区 | 国产精品免费大片 | 久久不射网| 国产欧美日韩另类 | 久久久免费精品视频 | 操丝袜少妇| 天堂中文在线官网 | 国产美女一区二区三区 | 中文精品久久 | 大地av| av电影在线观看网址 | 我想看毛片 | 精品国产亚洲av麻豆 | 亚洲三级精品 | 亚洲成人一二三区 | 国产91一区在线精品 | 黄色大尺度视频 | 91激情捆绑调教喷水 | 美女又爽又黄视频 | 91一区二区三区 | www.玖玖玖 | 久久久久国产精品区片区无码 | www久久久天天com | avt天堂网 | a毛片网站| 亚洲av无码专区国产乱码不卡 | 欧美顶级少妇做爰 | 加勒比一区二区 | 国产精品成人在线 | 日本精品网站 | 亚洲欧美激情精品一区二区 | 久久精品欧美一区 | 极品少妇av | 黄瓜视频污在线观看 | 免费在线观看黄色网址 | 北岛玲av | 美女露出让男生揉的视频 | 欧美亚洲精品一区二区 | 深爱婷婷网 | 91福利视频在线观看 | 在线观看免费黄色小视频 | 国产一区亚洲二区三区 | 啊v视频在线| 九九热久久免费视频 | 同人动漫在线观看 | 手机福利在线 | 欧美中文网 | av在线小说 | v天堂在线 | 青青青手机视频 | www亚洲国产 | 久久久麻豆 | 日韩免费三级 | 天天色天天干天天 | a级全黄 | 欧美理伦少妇2做爰 | 亚洲精品天天 | 狠狠干干| 狠狠欧美 | 国产97av | 精品一区二区三区蜜桃 | 啪啪无遮挡 | 熟女精品一区二区三区 | 国产三级一区二区三区 | 极品销魂美女一区二区三区 |