日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當(dāng)前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

Faster R-CNN

發(fā)布時間:2025/3/21 编程问答 56 豆豆
生活随笔 收集整理的這篇文章主要介紹了 Faster R-CNN 小編覺得挺不錯的,現(xiàn)在分享給大家,幫大家做個參考.

轉(zhuǎn)載自:

http://blog.csdn.net/cv_family_z/article/details/46864473

摘要:SPPNet和Fast R-CNN降低了網(wǎng)絡(luò)學(xué)習(xí)特征的時間,SS由于需耗時1~2s,EdgeBoxes
耗時約0.2s,提取proposal的方法成為檢測的瓶頸。本文提出了Region Proposal Networks(RPNs)實(shí)現(xiàn)實(shí)時提取proposals,它能與檢測網(wǎng)絡(luò)共享全圖像卷積特征。RPNs是一個能夠預(yù)測某位置上的目標(biāo)bbox和objectness的全卷積網(wǎng)絡(luò)。對于VGG-16網(wǎng)絡(luò),檢測系統(tǒng)在GPU上的速度為5fps。VOC2007的mAP為73.2%,每幅圖像大約300個proposals。

靈感:基于區(qū)域的檢測使用的卷積特征圖,如FRCN,同樣可以用來生成proposals。在這些卷積層之后,作者通過增加兩個卷積層構(gòu)建了RPNs,一個將卷積圖編碼為低維(256d)向量,另外一個在每個卷積圖的位置上生成一個objectness score和k個proposals的回歸bbox,k=9。

RPNs網(wǎng)絡(luò)
RPNs將圖像作為輸入,輸出帶有objectness score的bbox。使用一個小的網(wǎng)絡(luò)在最后一個卷積層輸出的卷積特征圖上產(chǎn)生區(qū)域proposals,這個小網(wǎng)絡(luò)與輸入的特征圖以n*n的窗口進(jìn)行全連接,每個滑動窗之后映射到一個低維向量(ZF5-256d,VGG-512d),之后將向量送入兩個全連接的子層:一個bbox回歸層和一個bbox分類層。網(wǎng)絡(luò)的結(jié)構(gòu)如下圖所示:

平移不變的錨點(diǎn)
每一個滑動窗滑過的位置有k個proposals,cls子層輸出每個proposal的object\non-object的2k個scores,reg子層輸出對應(yīng)坐標(biāo)的4k個節(jié)點(diǎn)。k個proposals根據(jù)k個錨點(diǎn)進(jìn)行參數(shù)化,每個錨點(diǎn)是對應(yīng)尺度和長寬比的中心,文中使用3個尺度,3個長寬比,得到9個錨點(diǎn)。如果特征圖大小為W×H,則共有WHk個錨點(diǎn)。

Proposals學(xué)習(xí)的損失函數(shù)
按照以下規(guī)則對錨點(diǎn)分配二值類別標(biāo)記。正樣本標(biāo)記:(1)與groundtruth的IoU最高的錨點(diǎn),(2)與任意groundtruth IoU>0.7的錨點(diǎn),某個groundtruth有可能對應(yīng)幾個正錨點(diǎn)。負(fù)樣本:與groundtruth的IoU<0.3的錨點(diǎn)。其余的錨點(diǎn)不在訓(xùn)練使用的范圍內(nèi)。使用FRCN的multi-task loss最小化目標(biāo)函數(shù),某個錨點(diǎn)box的損失函數(shù)為:

式中pi 是錨點(diǎn)i為物體的預(yù)測概率,Lcls 是而分類object/non-object的softmax loss。

優(yōu)化
RPN是一個全卷積網(wǎng)絡(luò),可使用bp及SGD訓(xùn)練,使用FRCN中的image-centric進(jìn)行訓(xùn)練,為了避免樣本偏斜,每幅圖采樣256個樣本計算loss,正負(fù)樣本為1:1。

Region proposal與目標(biāo)檢測共享卷積特征
使用交替優(yōu)化學(xué)習(xí)共享特征的4步訓(xùn)練法:
1)訓(xùn)練RPN,使用ImageNet初訓(xùn)練的網(wǎng)絡(luò)進(jìn)行end-to-end的微調(diào);
2)使用FRCN及RPN生成的proposal訓(xùn)練一個檢測網(wǎng)絡(luò),該步未共享特征;
3)使用檢測網(wǎng)絡(luò)初始化RPNs訓(xùn)練,固定共享的卷積層只微調(diào)為RPN新增的層;
4)固定共享層,微調(diào)FRCN的全連接層

實(shí)現(xiàn)細(xì)節(jié)
使用單尺度圖像訓(xùn)練RPNs和FRCN,縮放圖像使得短邊為600像素。對于每個錨點(diǎn),三個尺度對應(yīng)的box面積分別為128225625122,3個長寬比分別為1:1,1:2,2:1,學(xué)習(xí)到的平均proposal大小如下表所示:

對于1000×600 的輸入圖像,約有20k個錨點(diǎn),如果忽略cross-boundary的錨點(diǎn),約有6k個用來訓(xùn)練。檢測時,基于cls score使用NMS將proposal壓縮至2k個,之后用top-N個proposal來檢測。

實(shí)驗(yàn)結(jié)果
使用SS,EB,RBN生成proposal的實(shí)驗(yàn)結(jié)果及ablation的實(shí)驗(yàn)結(jié)果如下表所示:

ablation實(shí)驗(yàn)結(jié)果表明共享卷積特征mAP能提升1.2%,主要是在共享的第三步使用了微調(diào)的檢測特征來微調(diào)RPN。

每一步的運(yùn)行時間如下表所示


總結(jié)

以上是生活随笔為你收集整理的Faster R-CNN的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網(wǎng)站內(nèi)容還不錯,歡迎將生活随笔推薦給好友。

主站蜘蛛池模板: 中文字幕在线一区 | 一区二区精品免费 | 国产精品无码一区二区桃花视频 | 一本久道视频一本久道 | 爱情岛论坛自拍亚洲品质极速最新章 | 波多野结衣黄色 | 精品视频免费在线观看 | 亚洲人妖在线 | 神马午夜国产 | 欧美日韩在线免费观看视频 | 奇米影视首页 | 黄色网址在线视频 | 国产伦精品一区二区三区妓女下载 | 国产熟妇一区二区三区aⅴ网站 | 中文字幕在线观看精品 | 亚洲 高清 成人 动漫 | 日韩激情免费 | 伊人久操| 亚洲4438| 91色多多| 91在线视频免费 | 操老女人视频 | japanese在线观看| 5级黄色片| 小泽玛利亚一区二区三区在线观看 | 国内精品视频在线 | 免费午夜人成电影 | 国产小视频自拍 | 国产日韩欧美中文 | 体内精69xxxxxx | 亚洲视频国产精品 | 香蕉在线观看 | 欧美福利视频在线观看 | 人体写真 福利视频 | www.欧美日韩| 99久久99| 51啪影院 | 欧美女同在线 | 久久亚洲热| 久久私人影院 | 国产毛片毛片毛片毛片毛片 | av一二区 | 91黄色入口 | 国产一区二区内射 | 韩国毛片视频 | 亚洲精品欧美日韩 | 长篇乱肉合集乱500小说日本 | 亚洲精品精品 | 一本大道久久久久精品嫩草 | 自拍视频在线观看 | 久久性爱视频网站 | 日日摸夜夜添夜夜添高潮喷水 | 欧美黄色免费视频 | 日本性生活一级片 | 日本一区二区三区视频在线播放 | 欧美日韩亚洲不卡 | 乱岳| 老司机午夜免费精品视频 | 日韩欧美大片在线观看 | 午夜福利电影一区二区 | 春宵av| 伊人自拍视频 | 日本午夜啪啪 | 老熟妇仑乱一区二区视频 | 国产少女免费观看高清 | 国产黄a三级三级三级 | 欧美三级在线看 | 亚洲精品国产手机 | 欧美蜜桃视频 | 国产精品久久久久久久久久久久久久久久 | 高清一区二区三区四区五区 | 秋霞视频在线 | 99精品视频在线免费观看 | www麻豆视频 | 亚洲理论在线 | 毛片视频网站在线观看 | 97射射| 日日夜夜天天干 | 免费在线观看视频a | 91人妻一区二区三区 | 天天天天干 | 成人免费黄色大片v266 | 久久综合久久久久 | 国产良妇出轨视频在线观看 | 精品人妻一区二区三区日产乱码卜 | 超碰免费观看 | 波多野结衣中文字幕一区二区 | 久久精品视频网站 | 亚洲精品传媒 | 亚洲欧洲免费无码 | 日韩亚洲视频在线观看 | 男人日女人的网站 | 欧美精品在线视频观看 | 在线亚洲区 | 午夜刺激视频 | 老外黄色一级片 | 成人在线视频免费看 | 日本黄页网址 | а√在线中文网新版地址在线 |