日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

faster rcnn可视化(修改demo.py保存网络中间结果)

發布時間:2025/3/21 编程问答 44 豆豆
生活随笔 收集整理的這篇文章主要介紹了 faster rcnn可视化(修改demo.py保存网络中间结果) 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

轉載自:http://blog.csdn.net/u010668907/article/details/51439503


faster rcnn用Python版本https://github.com/rbgirshick/py-faster-rcnn

以demo.py中默認網絡VGG16.

原本demo.py地址https://github.com/rbgirshick/py-faster-rcnn/blob/master/tools/demo.py

圖有點多,貼一個圖的本分結果出來:


上圖是原圖,下面第一張是網絡中命名為“conv1_1”的結果圖;第二張是命名為“rpn_cls_prob_reshape”的結果圖;第三張是“rpnoutput”的結果圖

看一下我修改后的代碼:

[python] view plaincopyprint?
  • #!/usr/bin/env?python??
  • ??
  • #?--------------------------------------------------------??
  • #?Faster?R-CNN??
  • #?Copyright?(c)?2015?Microsoft??
  • #?Licensed?under?The?MIT?License?[see?LICENSE?for?details]??
  • #?Written?by?Ross?Girshick??
  • #?--------------------------------------------------------??
  • ??
  • """?
  • Demo?script?showing?detections?in?sample?images.?
  • ?
  • See?README.md?for?installation?instructions?before?running.?
  • """??
  • ??
  • import?_init_paths??
  • from?fast_rcnn.config?import?cfg??
  • from?fast_rcnn.test?import?im_detect??
  • from?fast_rcnn.nms_wrapper?import?nms??
  • from?utils.timer?import?Timer??
  • import?matplotlib.pyplot?as?plt??
  • import?numpy?as?np??
  • import?scipy.io?as?sio??
  • import?caffe,?os,?sys,?cv2??
  • import?argparse??
  • import?math??
  • ??
  • CLASSES?=?('__background__',??
  • ???????????'aeroplane',?'bicycle',?'bird',?'boat',??
  • ???????????'bottle',?'bus',?'car',?'cat',?'chair',??
  • ???????????'cow',?'diningtable',?'dog',?'horse',??
  • ???????????'motorbike',?'person',?'pottedplant',??
  • ???????????'sheep',?'sofa',?'train',?'tvmonitor')??
  • ??
  • NETS?=?{'vgg16':?('VGG16',??
  • ??????????????????'VGG16_faster_rcnn_final.caffemodel'),??
  • ????????'zf':?('ZF',??
  • ??????????????????'ZF_faster_rcnn_final.caffemodel')}??
  • ??
  • ??
  • def?vis_detections(im,?class_name,?dets,?thresh=0.5):??
  • ????"""Draw?detected?bounding?boxes."""??
  • ????inds?=?np.where(dets[:,?-1]?>=?thresh)[0]??
  • ????if?len(inds)?==?0:??
  • ????????return??
  • ??
  • ????im?=?im[:,?:,?(2,?1,?0)]??
  • ????fig,?ax?=?plt.subplots(figsize=(12,?12))??
  • ????ax.imshow(im,?aspect='equal')??
  • ????for?i?in?inds:??
  • ????????bbox?=?dets[i,?:4]??
  • ????????score?=?dets[i,?-1]??
  • ??
  • ????????ax.add_patch(??
  • ????????????plt.Rectangle((bbox[0],?bbox[1]),??
  • ??????????????????????????bbox[2]?-?bbox[0],??
  • ??????????????????????????bbox[3]?-?bbox[1],?fill=False,??
  • ??????????????????????????edgecolor='red',?linewidth=3.5)??
  • ????????????)??
  • ????????ax.text(bbox[0],?bbox[1]?-?2,??
  • ????????????????'{:s}?{:.3f}'.format(class_name,?score),??
  • ????????????????bbox=dict(facecolor='blue',?alpha=0.5),??
  • ????????????????fontsize=14,?color='white')??
  • ??
  • ????ax.set_title(('{}?detections?with?'??
  • ??????????????????'p({}?|?box)?>=?{:.1f}').format(class_name,?class_name,??
  • ??????????????????????????????????????????????????thresh),??
  • ??????????????????fontsize=14)??
  • ????plt.axis('off')??
  • ????plt.tight_layout()??
  • ????#plt.draw()??
  • def?save_feature_picture(data,?name,?image_name=None,?padsize?=?1,?padval?=?1):??
  • ????data?=?data[0]??
  • ????#print?"data.shape1:?",?data.shape??
  • ????n?=?int(np.ceil(np.sqrt(data.shape[0])))??
  • ????padding?=?((0,?n?**?2?-?data.shape[0]),?(0,?0),?(0,?padsize))?+?((0,?0),)?*?(data.ndim?-?3)??
  • ????#print?"padding:?",?padding??
  • ????data?=?np.pad(data,?padding,?mode='constant',?constant_values=(padval,?padval))??
  • ????#print?"data.shape2:?",?data.shape??
  • ??????
  • ????data?=?data.reshape((n,?n)?+?data.shape[1:]).transpose((0,?2,?1,?3)?+?tuple(range(4,?data.ndim?+?1)))??
  • ????#print?"data.shape3:?",?data.shape,?n??
  • ????data?=?data.reshape((n?*?data.shape[1],?n?*?data.shape[3])?+?data.shape[4:])??
  • ????#print?"data.shape4:?",?data.shape??
  • ????plt.figure()??
  • ????plt.imshow(data,cmap='gray')??
  • ????plt.axis('off')??
  • ????#plt.show()??
  • ????if?image_name?==?None:??
  • ????????img_path?=?'./data/feature_picture/'???
  • ????else:??
  • ????????img_path?=?'./data/feature_picture/'?+?image_name?+?"/"??
  • ????????check_file(img_path)??
  • ????plt.savefig(img_path?+?name?+?".jpg",?dpi?=?400,?bbox_inches?=?"tight")??
  • def?check_file(path):??
  • ????if?not?os.path.exists(path):??
  • ????????os.mkdir(path)??
  • def?demo(net,?image_name):??
  • ????"""Detect?object?classes?in?an?image?using?pre-computed?object?proposals."""??
  • ??
  • ????#?Load?the?demo?image??
  • ????im_file?=?os.path.join(cfg.DATA_DIR,?'demo',?image_name)??
  • ????im?=?cv2.imread(im_file)??
  • ??
  • ????#?Detect?all?object?classes?and?regress?object?bounds??
  • ????timer?=?Timer()??
  • ????timer.tic()??
  • ????scores,?boxes?=?im_detect(net,?im)??
  • ????for?k,?v?in?net.blobs.items():??
  • ????????if?k.find("conv")>-1?or?k.find("pool")>-1?or?k.find("rpn")>-1:??
  • ????????????save_feature_picture(v.data,?k.replace("/",?""),?image_name)#net.blobs["conv1_1"].data,?"conv1_1")???
  • ????timer.toc()??
  • ????print?('Detection?took?{:.3f}s?for?'??
  • ???????????'{:d}?object?proposals').format(timer.total_time,?boxes.shape[0])??
  • ??
  • ????#?Visualize?detections?for?each?class??
  • ????CONF_THRESH?=?0.8??
  • ????NMS_THRESH?=?0.3??
  • ????for?cls_ind,?cls?in?enumerate(CLASSES[1:]):??
  • ????????cls_ind?+=?1?#?because?we?skipped?background??
  • ????????cls_boxes?=?boxes[:,?4*cls_ind:4*(cls_ind?+?1)]??
  • ????????cls_scores?=?scores[:,?cls_ind]??
  • ????????dets?=?np.hstack((cls_boxes,??
  • ??????????????????????????cls_scores[:,?np.newaxis])).astype(np.float32)??
  • ????????keep?=?nms(dets,?NMS_THRESH)??
  • ????????dets?=?dets[keep,?:]??
  • ????????vis_detections(im,?cls,?dets,?thresh=CONF_THRESH)??
  • ??
  • def?parse_args():??
  • ????"""Parse?input?arguments."""??
  • ????parser?=?argparse.ArgumentParser(description='Faster?R-CNN?demo')??
  • ????parser.add_argument('--gpu',?dest='gpu_id',?help='GPU?device?id?to?use?[0]',??
  • ????????????????????????default=0,?type=int)??
  • ????parser.add_argument('--cpu',?dest='cpu_mode',??
  • ????????????????????????help='Use?CPU?mode?(overrides?--gpu)',??
  • ????????????????????????action='store_true')??
  • ????parser.add_argument('--net',?dest='demo_net',?help='Network?to?use?[vgg16]',??
  • ????????????????????????choices=NETS.keys(),?default='vgg16')??
  • ??
  • ????args?=?parser.parse_args()??
  • ??
  • ????return?args??
  • ??
  • def?print_param(net):??
  • ????for?k,?v?in?net.blobs.items():??
  • ????print?(k,?v.data.shape)??
  • ????print?""??
  • ????for?k,?v?in?net.params.items():??
  • ????print?(k,?v[0].data.shape)????
  • ??
  • if?__name__?==?'__main__':??
  • ????cfg.TEST.HAS_RPN?=?True??#?Use?RPN?for?proposals??
  • ??
  • ????args?=?parse_args()??
  • ??
  • ????prototxt?=?os.path.join(cfg.MODELS_DIR,?NETS[args.demo_net][0],??
  • ????????????????????????????'faster_rcnn_alt_opt',?'faster_rcnn_test.pt')??
  • ????#print?"prototxt:?",?prototxt??
  • ????caffemodel?=?os.path.join(cfg.DATA_DIR,?'faster_rcnn_models',??
  • ??????????????????????????????NETS[args.demo_net][1])??
  • ??
  • ????if?not?os.path.isfile(caffemodel):??
  • ????????raise?IOError(('{:s}?not?found.\nDid?you?run?./data/script/'??
  • ???????????????????????'fetch_faster_rcnn_models.sh?').format(caffemodel))??
  • ??
  • ????if?args.cpu_mode:??
  • ????????caffe.set_mode_cpu()??
  • ????else:??
  • ????????caffe.set_mode_gpu()??
  • ????????caffe.set_device(args.gpu_id)??
  • ????????cfg.GPU_ID?=?args.gpu_id??
  • ????net?=?caffe.Net(prototxt,?caffemodel,?caffe.TEST)??
  • ??????
  • ????#print_param(net)??
  • ??
  • ????print?'\n\nLoaded?network?{:s}'.format(caffemodel)??
  • ??
  • ????#?Warmup?on?a?dummy?image??
  • ????im?=?128?*?np.ones((300,?500,?3),?dtype=np.uint8)??
  • ????for?i?in?xrange(2):??
  • ????????_,?_=?im_detect(net,?im)??
  • ??
  • ????im_names?=?['000456.jpg',?'000542.jpg',?'001150.jpg',??
  • ????????????????'001763.jpg',?'004545.jpg']??
  • ????for?im_name?in?im_names:??
  • ????????print?'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~'??
  • ????????print?'Demo?for?data/demo/{}'.format(im_name)??
  • ????????demo(net,?im_name)??
  • ??
  • ????#plt.show()??
  • #!/usr/bin/env python# -------------------------------------------------------- # Faster R-CNN # Copyright (c) 2015 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Ross Girshick # --------------------------------------------------------""" Demo script showing detections in sample images.See README.md for installation instructions before running. """import _init_paths from fast_rcnn.config import cfg from fast_rcnn.test import im_detect from fast_rcnn.nms_wrapper import nms from utils.timer import Timer import matplotlib.pyplot as plt import numpy as np import scipy.io as sio import caffe, os, sys, cv2 import argparse import mathCLASSES = ('__background__','aeroplane', 'bicycle', 'bird', 'boat','bottle', 'bus', 'car', 'cat', 'chair','cow', 'diningtable', 'dog', 'horse','motorbike', 'person', 'pottedplant','sheep', 'sofa', 'train', 'tvmonitor')NETS = {'vgg16': ('VGG16','VGG16_faster_rcnn_final.caffemodel'),'zf': ('ZF','ZF_faster_rcnn_final.caffemodel')}def vis_detections(im, class_name, dets, thresh=0.5):"""Draw detected bounding boxes."""inds = np.where(dets[:, -1] >= thresh)[0]if len(inds) == 0:returnim = im[:, :, (2, 1, 0)]fig, ax = plt.subplots(figsize=(12, 12))ax.imshow(im, aspect='equal')for i in inds:bbox = dets[i, :4]score = dets[i, -1]ax.add_patch(plt.Rectangle((bbox[0], bbox[1]),bbox[2] - bbox[0],bbox[3] - bbox[1], fill=False,edgecolor='red', linewidth=3.5))ax.text(bbox[0], bbox[1] - 2,'{:s} {:.3f}'.format(class_name, score),bbox=dict(facecolor='blue', alpha=0.5),fontsize=14, color='white')ax.set_title(('{} detections with ''p({} | box) >= {:.1f}').format(class_name, class_name,thresh),fontsize=14)plt.axis('off')plt.tight_layout()#plt.draw() def save_feature_picture(data, name, image_name=None, padsize = 1, padval = 1):data = data[0]#print "data.shape1: ", data.shapen = int(np.ceil(np.sqrt(data.shape[0])))padding = ((0, n ** 2 - data.shape[0]), (0, 0), (0, padsize)) + ((0, 0),) * (data.ndim - 3)#print "padding: ", paddingdata = np.pad(data, padding, mode='constant', constant_values=(padval, padval))#print "data.shape2: ", data.shapedata = data.reshape((n, n) + data.shape[1:]).transpose((0, 2, 1, 3) + tuple(range(4, data.ndim + 1)))#print "data.shape3: ", data.shape, ndata = data.reshape((n * data.shape[1], n * data.shape[3]) + data.shape[4:])#print "data.shape4: ", data.shapeplt.figure()plt.imshow(data,cmap='gray')plt.axis('off')#plt.show()if image_name == None:img_path = './data/feature_picture/' else:img_path = './data/feature_picture/' + image_name + "/"check_file(img_path)plt.savefig(img_path + name + ".jpg", dpi = 400, bbox_inches = "tight") def check_file(path):if not os.path.exists(path):os.mkdir(path) def demo(net, image_name):"""Detect object classes in an image using pre-computed object proposals."""# Load the demo imageim_file = os.path.join(cfg.DATA_DIR, 'demo', image_name)im = cv2.imread(im_file)# Detect all object classes and regress object boundstimer = Timer()timer.tic()scores, boxes = im_detect(net, im)for k, v in net.blobs.items():if k.find("conv")>-1 or k.find("pool")>-1 or k.find("rpn")>-1:save_feature_picture(v.data, k.replace("/", ""), image_name)#net.blobs["conv1_1"].data, "conv1_1") timer.toc()print ('Detection took {:.3f}s for ''{:d} object proposals').format(timer.total_time, boxes.shape[0])# Visualize detections for each classCONF_THRESH = 0.8NMS_THRESH = 0.3for cls_ind, cls in enumerate(CLASSES[1:]):cls_ind += 1 # because we skipped backgroundcls_boxes = boxes[:, 4*cls_ind:4*(cls_ind + 1)]cls_scores = scores[:, cls_ind]dets = np.hstack((cls_boxes,cls_scores[:, np.newaxis])).astype(np.float32)keep = nms(dets, NMS_THRESH)dets = dets[keep, :]vis_detections(im, cls, dets, thresh=CONF_THRESH)def parse_args():"""Parse input arguments."""parser = argparse.ArgumentParser(description='Faster R-CNN demo')parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]',default=0, type=int)parser.add_argument('--cpu', dest='cpu_mode',help='Use CPU mode (overrides --gpu)',action='store_true')parser.add_argument('--net', dest='demo_net', help='Network to use [vgg16]',choices=NETS.keys(), default='vgg16')args = parser.parse_args()return argsdef print_param(net):for k, v in net.blobs.items():print (k, v.data.shape)print ""for k, v in net.params.items():print (k, v[0].data.shape) if __name__ == '__main__':cfg.TEST.HAS_RPN = True # Use RPN for proposalsargs = parse_args()prototxt = os.path.join(cfg.MODELS_DIR, NETS[args.demo_net][0],'faster_rcnn_alt_opt', 'faster_rcnn_test.pt')#print "prototxt: ", prototxtcaffemodel = os.path.join(cfg.DATA_DIR, 'faster_rcnn_models',NETS[args.demo_net][1])if not os.path.isfile(caffemodel):raise IOError(('{:s} not found.\nDid you run ./data/script/''fetch_faster_rcnn_models.sh?').format(caffemodel))if args.cpu_mode:caffe.set_mode_cpu()else:caffe.set_mode_gpu()caffe.set_device(args.gpu_id)cfg.GPU_ID = args.gpu_idnet = caffe.Net(prototxt, caffemodel, caffe.TEST)#print_param(net)print '\n\nLoaded network {:s}'.format(caffemodel)# Warmup on a dummy imageim = 128 * np.ones((300, 500, 3), dtype=np.uint8)for i in xrange(2):_, _= im_detect(net, im)im_names = ['000456.jpg', '000542.jpg', '001150.jpg','001763.jpg', '004545.jpg']for im_name in im_names:print '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~'print 'Demo for data/demo/{}'.format(im_name)demo(net, im_name)#plt.show()1.在data下手動創建“feature_picture”文件夾就可以替換原來的demo使用了。

    2.上面代碼主要添加方法是:save_feature_picture,它會對網絡測試的某些階段的數據處理然后保存。

    3.某些階段是因為:if k.find("conv")>-1 or k.find("pool")>-1 or k.find("rpn")>-1這行代碼(110行),保證網絡層name有這三個詞的才會被保存,因為其他層無法用圖片

    保存,如全連接(參數已經是二維的了)等層。

    4.放開174行print_param(net)的注釋,就可以看到網絡參數的輸出。

    5.執行的最終結果 是在data/feature_picture產生以圖片名字為文件夾名字的文件夾,文件夾下有以網絡每層name為名字的圖片。

    6.另外部分網絡的層name中有非法字符不能作為圖片名字,我在代碼的111行只是把‘字符/’剔除掉了,所以建議網絡名字不要又其他字符。

    圖片下載和代碼下載方式:

    [plain] view plaincopyprint?
  • git?clone?https://github.com/meihuakaile/faster-rcnn.git ?

  • 總結

    以上是生活随笔為你收集整理的faster rcnn可视化(修改demo.py保存网络中间结果)的全部內容,希望文章能夠幫你解決所遇到的問題。

    如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。