数据挖掘比赛模板
Santander ML Explainability
- 1 準(zhǔn)本步驟
- 1-1.導(dǎo)包
- 1-2 設(shè)置
- 1-3 版本
- 2 問(wèn)題描述
- 3 EDA
- 3-1 數(shù)據(jù)采集
- 減小內(nèi)存
- 3-1-1 數(shù)據(jù)集字段
- 3-2-2 數(shù)值描述
- 3-2可視化
- 3-2-1 直方圖
- 3-2-2 平均頻率
- 3-2-3 countplot
- 3-2-4 hist
- 3-2-5 distplot
- 3-2-6 散點(diǎn)圖
- 3-3 數(shù)據(jù)預(yù)處理
- 3-3-1 缺失值檢查
- 3-3-2 二值化
- 3-3-3 數(shù)據(jù)平衡
- 3-3-4 偏度和峰度
- 4 特征工程
- 4-1 Permutation Importance
- 4-2 如何計(jì)算和顯示重要性
- 4-4 Partial Dependence Plots
- 4-5 Partial Dependence Plot
- 4-6 Chart analysis
- 4-7 SHAP Values
- 4-7 特征之間的相關(guān)性
- 5 模型
- 準(zhǔn)備:Augment
- 5-1 lightgbm
- 5-2 RandomForestClassifier
- 5-3 DecisionTreeClassifier
- 5-4 Logistic Regression
- 6 提交
1 準(zhǔn)本步驟
1-1.導(dǎo)包
from sklearn.model_selection import train_test_split from sklearn.model_selection import StratifiedKFold from sklearn.ensemble import RandomForestClassifier from sklearn.tree import DecisionTreeClassifier from catboost import CatBoostClassifier,Pool from IPython.display import display import matplotlib.patches as patch import matplotlib.pyplot as plt from sklearn.svm import NuSVR from scipy.stats import norm from sklearn import svm import lightgbm as lgb import xgboost as xgb import seaborn as sns import pandas as pd import numpy as np import warnings import time import glob import sys import os import gc1-2 設(shè)置
# for get better result chage fold_n to 5 fold_n=5 folds = StratifiedKFold(n_splits=fold_n, shuffle=True, random_state=10) %matplotlib inline %precision 4 warnings.filterwarnings('ignore') plt.style.use('ggplot') np.set_printoptions(suppress=True) pd.set_option("display.precision", 15)1-3 版本
print('pandas: {}'.format(pd.__version__)) print('numpy: {}'.format(np.__version__)) print('Python: {}'.format(sys.version))2 問(wèn)題描述
3 EDA
3-1 數(shù)據(jù)采集
print(os.listdir("../input/")) train= pd.read_csv("../input/train.csv") test = pd.read_csv('../input/test.csv') sample_submission = pd.read_csv('../input/sample_submission.csv') sample_submission.head() train.shape, test.shape, sample_submission.shape train.head(5)減小內(nèi)存
def reduce_mem_usage(df):start_mem_usg = df.memory_usage().sum() / 1024**2 print("Memory usage of properties dataframe is :",start_mem_usg," MB")NAlist = [] # Keeps track of columns that have missing values filled in. for col in df.columns:if df[col].dtype != object: # Exclude strings# Print current column typeprint("******************************")print("Column: ",col)print("dtype before: ",df[col].dtype)# make variables for Int, max and minIsInt = Falsemx = df[col].max()mn = df[col].min()# Integer does not support NA, therefore, NA needs to be filledif not np.isfinite(df[col]).all(): NAlist.append(col)df[col].fillna(mn-1,inplace=True) # test if column can be converted to an integerasint = df[col].fillna(0).astype(np.int64)result = (df[col] - asint)result = result.sum()if result > -0.01 and result < 0.01:IsInt = True# Make Integer/unsigned Integer datatypesif IsInt:if mn >= 0:if mx < 255:df[col] = df[col].astype(np.uint8)elif mx < 65535:df[col] = df[col].astype(np.uint16)elif mx < 4294967295:df[col] = df[col].astype(np.uint32)else:df[col] = df[col].astype(np.uint64)else:if mn > np.iinfo(np.int8).min and mx < np.iinfo(np.int8).max:df[col] = df[col].astype(np.int8)elif mn > np.iinfo(np.int16).min and mx < np.iinfo(np.int16).max:df[col] = df[col].astype(np.int16)elif mn > np.iinfo(np.int32).min and mx < np.iinfo(np.int32).max:df[col] = df[col].astype(np.int32)elif mn > np.iinfo(np.int64).min and mx < np.iinfo(np.int64).max:df[col] = df[col].astype(np.int64) # Make float datatypes 32 bitelse:df[col] = df[col].astype(np.float32)# Print new column typeprint("dtype after: ",df[col].dtype)print("******************************")# Print final resultprint("___MEMORY USAGE AFTER COMPLETION:___")mem_usg = df.memory_usage().sum() / 1024**2 print("Memory usage is: ",mem_usg," MB")print("This is ",100*mem_usg/start_mem_usg,"% of the initial size")return df, NAlist #訓(xùn)練集 train, NAlist = reduce_mem_usage(train) print("_________________") print("") print("Warning: the following columns have missing values filled with 'df['column_name'].min() -1': ") print("_________________") print("") print(NAlist) #測(cè)試集 test, NAlist = reduce_mem_usage(test) print("_________________") print("") print("Warning: the following columns have missing values filled with 'df['column_name'].min() -1': ") print("_________________") print("") print(NAlist)3-1-1 數(shù)據(jù)集字段
train.columns print(len(train.columns)) print(train.info())3-2-2 數(shù)值描述
train.describe()3-2可視化
3-2-1 直方圖
train['target'].value_counts().plot.bar(); f,ax=plt.subplots(1,2,figsize=(20,10)) train[train['target']==0].var_0.plot.hist(ax=ax[0],bins=20,edgecolor='black',color='red') ax[0].set_title('target= 0') x1=list(range(0,85,5)) ax[0].set_xticks(x1) train[train['target']==1].var_0.plot.hist(ax=ax[1],color='green',bins=20,edgecolor='black') ax[1].set_title('target= 1') x2=list(range(0,85,5)) ax[1].set_xticks(x2) plt.show()3-2-2 平均頻率
train[train.columns[2:]].mean().plot('hist'); plt.title('Mean Frequency');3-2-3 countplot
f,ax=plt.subplots(1,2,figsize=(18,8)) train['target'].value_counts().plot.pie(explode=[0,0.1],autopct='%1.1f%%',ax=ax[0],shadow=True) ax[0].set_title('target') ax[0].set_ylabel('') sns.countplot('target',data=train,ax=ax[1]) ax[1].set_title('target') plt.show()3-2-4 hist
train["var_0"].hist();3-2-5 distplot
sns.set(rc={'figure.figsize':(9,7)}) sns.distplot(train['target']);3-2-6 散點(diǎn)圖
def plot_feature_scatter(df1, df2, features):i = 0sns.set_style('whitegrid')plt.figure()fig, ax = plt.subplots(4,4,figsize=(14,14))for feature in features:i += 1plt.subplot(4,4,i)plt.scatter(df1[feature], df2[feature], marker='+')plt.xlabel(feature, fontsize=9)plt.show(); features = ['var_0', 'var_1','var_2','var_3', 'var_4', 'var_5', 'var_6', 'var_7', 'var_8', 'var_9', 'var_10','var_11','var_12', 'var_13', 'var_14', 'var_15', ] plot_feature_scatter(train_df[::20],test_df[::20], features) def plot_new_feature_distribution(df1, df2, label1, label2, features):i = 0sns.set_style('whitegrid')plt.figure()fig, ax = plt.subplots(2,4,figsize=(18,8))for feature in features:i += 1plt.subplot(2,4,i)sns.kdeplot(df1[feature], bw=0.5,label=label1)sns.kdeplot(df2[feature], bw=0.5,label=label2)plt.xlabel(feature, fontsize=11)locs, labels = plt.xticks()plt.tick_params(axis='x', which='major', labelsize=8)plt.tick_params(axis='y', which='major', labelsize=8)plt.show(); t0 = train_df.loc[train_df['target'] == 0] t1 = train_df.loc[train_df['target'] == 1] features = train_df.columns.values[202:] plot_new_feature_distribution(t0, t1, 'target: 0', 'target: 1', features)3-3 數(shù)據(jù)預(yù)處理
3-3-1 缺失值檢查
def check_missing_data(df):flag=df.isna().sum().any()if flag==True:total = df.isnull().sum()percent = (df.isnull().sum())/(df.isnull().count()*100)output = pd.concat([total, percent], axis=1, keys=['Total', 'Percent'])data_type = []# written by MJ Bahmanifor col in df.columns:dtype = str(df[col].dtype)data_type.append(dtype)output['Types'] = data_typereturn(np.transpose(output))else:return(False) #另一個(gè)版本 def missing_data(data):total = data.isnull().sum()percent = (data.isnull().sum()/data.isnull().count()*100)tt = pd.concat([total, percent], axis=1, keys=['Total', 'Percent'])types = []for col in data.columns:dtype = str(data[col].dtype)types.append(dtype)tt['Types'] = typesreturn(np.transpose(tt)) check_missing_data(train) check_missing_data(test)3-3-2 二值化
train['target'].unique()3-3-3 數(shù)據(jù)平衡
train['target'].value_counts() def check_balance(df,target):check=[]# written by MJ Bahmani for binary targetprint('size of data is:',df.shape[0] )for i in [0,1]:print('for target {} ='.format(i))print(df[target].value_counts()[i]/df.shape[0]*100,'%')3-3-4 偏度和峰度
print("Skewness: %f" % train['target'].skew()) print("Kurtosis: %f" % train['target'].kurt())4 特征工程
4-1 Permutation Importance
1.哪些特征對(duì)預(yù)測(cè)影響最大?
2.如何從模型中提取信息?
4-2 如何計(jì)算和顯示重要性
import eli5 from eli5.sklearn import PermutationImportanceperm = PermutationImportance(rfc_model, random_state=1).fit(val_X, val_y) eli5.show_weights(perm, feature_names = val_X.columns.tolist(), top=150)4-4 Partial Dependence Plots
雖然特征重要性顯示變量對(duì)預(yù)測(cè)的影響最大,Partial Dependence Plots顯示特征如何影響預(yù)測(cè)和在模型擬合后計(jì)算Partial Dependence Plots。
train_X, val_X, train_y, val_y = train_test_split(X, y, random_state=1) tree_model = DecisionTreeClassifier(random_state=0, max_depth=5, min_samples_split=5).fit(train_X, train_y) features = [c for c in train.columns if c not in ['ID_code', 'target']] from sklearn import tree import graphviz tree_graph = tree.export_graphviz(tree_model, out_file=None, feature_names=features) graphviz.Source(tree_graph)4-5 Partial Dependence Plot
from matplotlib import pyplot as plt from pdpbox import pdp, get_dataset, info_plots# Create the data that we will plot pdp_goals = pdp.pdp_isolate(model=tree_model, dataset=val_X, model_features=features, feature='var_81')# plot it pdp.pdp_plot(pdp_goals, 'var_81') plt.show()4-6 Chart analysis
# Create the data that we will plot pdp_goals = pdp.pdp_isolate(model=tree_model, dataset=val_X, model_features=features, feature='var_82')# plot it pdp.pdp_plot(pdp_goals, 'var_82') plt.show()4-7 SHAP Values
row_to_show = 5 data_for_prediction = val_X.iloc[row_to_show] # use 1 row of data here. Could use multiple rows if desired data_for_prediction_array = data_for_prediction.values.reshape(1, -1)rfc_model.predict_proba(data_for_prediction_array); import shap # package used to calculate Shap values# Create object that can calculate shap values explainer = shap.TreeExplainer(rfc_model)# Calculate Shap values shap_values = explainer.shap_values(data_for_prediction) shap.initjs() shap.force_plot(explainer.expected_value[1], shap_values[1], data_for_prediction)4-7 特征之間的相關(guān)性
%%time correlations = train_df[features].corr().abs().unstack().sort_values(kind="quicksort").reset_index() correlations = correlations[correlations['level_0'] != correlations['level_1']] correlations.head(10)5 模型
準(zhǔn)備:Augment
def augment(x,y,t=2):xs,xn = [],[]for i in range(t):mask = y>0x1 = x[mask].copy()ids = np.arange(x1.shape[0])for c in range(x1.shape[1]):np.random.shuffle(ids)x1[:,c] = x1[ids][:,c]xs.append(x1)for i in range(t//2):mask = y==0x1 = x[mask].copy()ids = np.arange(x1.shape[0])for c in range(x1.shape[1]):np.random.shuffle(ids)x1[:,c] = x1[ids][:,c]xn.append(x1)xs = np.vstack(xs)xn = np.vstack(xn)ys = np.ones(xs.shape[0])yn = np.zeros(xn.shape[0])x = np.vstack([x,xs,xn])y = np.concatenate([y,ys,yn])return x,y5-1 lightgbm
params = {'objective' : "binary", 'boost':"gbdt",'metric':"auc",'boost_from_average':"false",'num_threads':8,'learning_rate' : 0.01,'num_leaves' : 13,'max_depth':-1,'tree_learner' : "serial",'feature_fraction' : 0.05,'bagging_freq' : 5,'bagging_fraction' : 0.4,'min_data_in_leaf' : 80,'min_sum_hessian_in_leaf' : 10.0,'verbosity' : 1} %%time y_pred_lgb = np.zeros(len(X_test)) num_round = 1000000 for fold_n, (train_index, valid_index) in enumerate(folds.split(X,y)):print('Fold', fold_n, 'started at', time.ctime())X_train, X_valid = X.iloc[train_index], X.iloc[valid_index]y_train, y_valid = y.iloc[train_index], y.iloc[valid_index]train_data = lgb.Dataset(X_train, label=y_train)valid_data = lgb.Dataset(X_valid, label=y_valid)lgb_model = lgb.train(params,train_data,num_round,#change 20 to 2000valid_sets = [train_data, valid_data],verbose_eval=1000,early_stopping_rounds = 3500)##change 10 to 200y_pred_lgb += lgb_model.predict(X_test, num_iteration=lgb_model.best_iteration)/55-2 RandomForestClassifier
train_X, val_X, train_y, val_y = train_test_split(X, y, random_state=1) rfc_model = RandomForestClassifier(random_state=0).fit(train_X, train_y) y_pred_rfc = rfc_model.predict(X_test)5-3 DecisionTreeClassifier
train_X, val_X, train_y, val_y = train_test_split(X, y, random_state=1) tree_model = DecisionTreeClassifier(random_state=0, max_depth=5, min_samples_split=5).fit(train_X, train_y) y_pred_tree = tree_model.predict(X_test)5-4 Logistic Regression
def augment(x,y,t=2):if t==0:return x, yxs,xn = [],[]for i in range(t):mask = y>0x1 = x[mask].copy()ids = np.arange(x1.shape[0])for c in range(x1.shape[1]):np.random.shuffle(ids)x1[:,c] = x1[ids][:,c]xs.append(x1)del x1gc.collect()for i in range(t//2):mask = y==0x1 = x[mask].copy()ids = np.arange(x1.shape[0])for c in range(x1.shape[1]):np.random.shuffle(ids)x1[:,c] = x1[ids][:,c]xn.append(x1)del x1gc.collect()print("The sizes of x, xn, and xs are {}, {}, {}, respectively.".format(sys.getsizeof(x),sys.getsizeof(xn),sys.getsizeof(xs)))xs = np.vstack(xs)xn = np.vstack(xn)print("The sizes of x, xn, and xs are {}, {}, {}, respectively.".format(sys.getsizeof(x)/1024**3,sys.getsizeof(xn),sys.getsizeof(xs)))ys = np.ones(xs.shape[0])yn = np.zeros(xn.shape[0])y = np.concatenate([y,ys,yn])print("The sizes of y, yn, and ys are {}, {}, {}, respectively.".format(sys.getsizeof(y),sys.getsizeof(yn),sys.getsizeof(ys)))gc.collect()return np.vstack([x,xs, xn]), y for fold_, (trn_, val_) in enumerate(folds.split(y, y)):print("Current Fold: {}".format(fold_))trn_x, trn_y = X[trn_, :], y[trn_]val_x, val_y = X[val_, :], y[val_]NAUGMENTATIONS=1#5NSHUFFLES=0#2 # turning off the augmentation by shuffling since it did not helpval_pred, test_fold_pred = 0, 0for i in range(NAUGMENTATIONS):print("\nFold {}, Augmentation {}".format(fold_, i+1))trn_aug_x, trn_aug_y = augment(trn_x, trn_y, NSHUFFLES)trn_aug_x = pd.DataFrame(trn_aug_x)trn_aug_x = trn_aug_x.add_prefix('var_')clf = Pipeline([#('scaler', StandardScaler()),#('qt', QuantileTransformer(output_distribution='normal')),('lr_clf', LogisticRegression(solver='lbfgs', max_iter=1500, C=10))])clf.fit(trn_aug_x, trn_aug_y)print("Making predictions for the validation data")val_pred += clf.predict_proba(val_x)[:,1]print("Making predictions for the test data")test_fold_pred += clf.predict_proba(X_test)[:,1]val_pred /= NAUGMENTATIONStest_fold_pred /= NAUGMENTATIONSroc_cv.append(roc_auc_score(val_y, val_pred))print("AUC = {}".format(roc_auc_score(val_y, val_pred)))oof_preds[val_, :] = val_pred.reshape((-1, 1))test_preds += test_fold_pred.reshape((-1, 1)) test_preds /= NFOLDS roc_score_1 = round(roc_auc_score(y, oof_preds.ravel()), 5) roc_score = round(sum(roc_cv)/len(roc_cv), 5) st_dev = round(np.array(roc_cv).std(), 5)print("Average of the folds' AUCs = {}".format(roc_score)) print("Combined folds' AUC = {}".format(roc_score_1)) print("The standard deviation = {}".format(st_dev))6 提交
submission_rfc_cat = pd.DataFrame({"ID_code": test["ID_code"],"target": (y_pred_rfc +y_pred_cat)/2}) submission_rfc_cat.to_csv('submission_rfc_cat.csv', index=False)總結(jié)
- 上一篇: kaggle-Santander 客户交
- 下一篇: 风控模型指标详解