日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 人工智能 > pytorch >内容正文

pytorch

0.0 目录-深度学习第三课《结构化机器学习项目》-Stanford吴恩达教授

發布時間:2025/4/5 pytorch 25 豆豆
生活随笔 收集整理的這篇文章主要介紹了 0.0 目录-深度学习第三课《结构化机器学习项目》-Stanford吴恩达教授 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

文章目錄

  • 第五課
  • 第四課
  • 第三課
  • 第二課
  • 第一課

第五課

《序列模型》筆記列表
Week 1循環序列模型
Week 1 傳送門 —>1.1 為什么選擇序列模型
1.2 數學符號
1.3 循環神經網絡
1.4 通過時間的方向傳播
1.5 不同類型的循環神經網絡
1.6 語言模型和序列生成
1.7 對新序列采樣
1.8 帶有神經網絡的梯度消失
1.9 GRU 單元
1.10 長短期機器 (LSTM)
1.11 雙向神經網絡
1.12 深層循環神經網絡
1.13 總結
Week 2自然語言處理與詞嵌入
Week 2 傳送門 —>2.1 詞匯表征
2.2 使用詞嵌入
2.3 詞嵌入的特性
2.4 嵌入矩陣
2.5 學習詞嵌入
2.6 Word2Vec
2.7 負采樣
2.8 GloVe 詞向量
2.9 情緒分類
2.10 詞嵌入除偏
2.11 總結
Week 3序列模型和注意力機制
Week 3 傳送門 —>3.1 基礎模型
3.2 選擇最可能的句子
3.3 定向搜索
3.4 改進定向搜索
3.5 定向搜索的誤差分析
3.6 Bleu 得分
3.7 注意力模型直觀理解
3.8 注意力模型
3.9 語音辨識
3.10 觸發字檢測
3.11 結論和致謝
3.12 總結

第四課

《卷積神經網絡》筆記列表
Week 1卷積神經網絡
Week 1 傳送門 —>1.1 計算機視覺
1.2 邊緣檢測示例
1.3 更多邊緣檢測內容
1.4 Padding
1.5 卷積步長
1.6 三維卷積
1.7 單層卷積網絡
1.8 簡單卷積網絡示例
1.9 池化層
1.10 卷積神經網絡示例
1.11 為什么使用卷積?
1.12 總結
Week 2深度卷積網絡:實例探究
Week 2 傳送門 —>2.1 為什么要進行實例探究?
2.2 經典網絡
2.3 殘差網絡
2.4 殘差網絡為什么有用?
2.5 網絡中的網絡以及1x1卷積
2.6 谷歌 Inception 網絡簡介
2.7 Inception 網絡
2.8 使用開源的實現方案
2.9 遷移學習
2.10 數據擴充
2.11 計算機視覺現狀
2.12 總結
Week 3目標檢測
Week 3 傳送門 —>3.1 目標定位
3.2 特征點檢測
3.3 目標檢測
3.4 卷積的滑動窗口實現
3.5 Bounding Box 預測
3.6 交并比
3.7 非極大值抑制
3.8 Anchor Boxes
3.9 YOLO 算法
3.10 候選區域
3.11 總結
Week 4特殊應用:人臉識別和神經風格轉換
Week 4 傳送門 —>4.1 什么是人臉識別?
4.2 One-Shot 學習
4.3 Siamese 網絡
4.4 Triplet 損失
4.5 面部驗證與二分類
4.6 什么是神經風格轉換?
4.7 什么是深度卷積網絡?
4.8 代價函數
4.9 內容代價函數
4.10 風格代價函數
4.11 一維到三維推廣
4.12 總結

第三課

《結構化機器學習項目》筆記列表
Week 1機器學習策略一
Week 1 傳送門 —>1.1 為什么是ML策略
1.2 正交化
1.3 單一數字評估指標
1.4 滿足和優化指標
1.5 訓練/開發/測試集劃分
1.6 開發集和測試集的大小
1.7 什么時候該改變開發_測試集和指標
1.8 為什么是人的表現
1.9 可避免誤差
1.10 理解人的表現
1.11 超越人的表現
1.12 改善你的模型的表現
[1.13 總結]
Week 2機器學習策略二
Week 2 傳送門 —>2.1 誤差分析
2.2 清除標注錯誤的數據
2.3 快速搭建你的第一個系統,并進行迭代
2.4 在不同的劃分上進行訓練并測試
2.5 不匹配數據劃分的偏差和誤差
2.6 定位數據不匹配
2.7 遷移學習
2.8 多任務學習
2.9 什么是端到端的深度學習
2.10 是否要使用端到端的深度學習
2.11 總結
采訪大牛采訪
傳送門 —>Andrej Karpathy
Ruslan Salakhutdinov

第二課

《改善神經網絡》筆記列表
Week 1深度學習的實用層面
Week 1 傳送門 —>1.1 訓練/開發/測試集
1.2 偏差/方差
1.3 機器學習基礎
1.4 正則化
1.5 為什么正則化可以減少過擬合
1.6 Dropout 正則化
1.7 理解 Dropout
1.8 其他正則化方法
1.9 歸一化輸入
1.10 梯度消失與梯度爆炸
1.11 神經網絡的權重初始化
1.12 梯度的數值逼近
1.13 梯度檢驗
1.14 關于梯度檢驗實現的注記
1.15 總結
Week 2優化算法
Week 2 傳送門 —>2.1 Mini-batch 梯度下降
2.2 理解 mini-batch 梯度下降法
2.3 指數加權平均
2.4 理解指數加權平均
2.5 指數加權平均的偏差修正
2.6 動量梯度下降法
2.7 RMSprop
2.8 Adam 優化算法
2.9 學習率衰減
2.10 局部最優的問題
2.11 總結
Week 3超參數調試、Batch正則化和程序框架
Week 3 傳送門 —>3.1 調試處理
3.2 為超參數選擇合適的范圍
3.3 超參數訓練的實踐: Pandas vs. Caviar
3.4 正則化網絡的激活函數
3.5 將 Batch Norm 擬合進神經網絡
3.6 Batch Norm 為什么奏效
3.7 測試時的 Batch Norm
3.8 Softmax 回歸
3.9 訓練一個 Softmax 分類器
3.10 深度學習框架
3.11 TensorFlow
3.12 總結
采訪大牛采訪
傳送門 —>Yoshua
Yuanqing Lin

第一課

《神經網絡與深度學習》筆記列表
Week 1深度學習概論
Week 1 傳送門 —>1.1 歡迎
1.2 什么是神經網絡
1.3 用神經網絡進行監督學習
1.4 為什么深度學習會興起
1.5 關于這門課
1.6 課程資源
1.7 總結習題
Week 2神經網絡基礎
Week 2 傳送門 —>2.1 二元分類
2.2 Logistic 回歸
2.3 Logistic 回歸損失函數
2.4 梯度下降法
2.5 導數
2.6 更多導數的例子
2.7 計算圖
2.8 計算圖的導數計算
2.9 Logistic 回歸的梯度下降法
2.10 m 個樣本的梯度下降
2.11 向量化
2.12 向量化的更多例子
2.13 向量化 Logistic 回歸
2.14 向量化 Logistic 回歸的梯度輸出
2.15 Python 中的廣播
2.16 關于 Python Numpy 向量的說明
2.17 Jupyter/iPython 筆記本的快速指南
2.18 Logistic 損失函數的解釋
2.19 總結習題
Week 3淺層神經網絡
Week 3 傳送門 —>3.1 神經網絡概覽
3.2 神經網絡表示
3.3 計算神經網絡的輸出
3.4 多個例子中的向量化
3.5 向量化實現的解釋
3.6 激活函數
3.7 為什么需要非線性激活函數
3.8 激活函數的導數
3.9 神經網絡的梯度下降法
3.10 直觀理解反向傳播
3.11 隨機初始化
3.12 總結習題
Week 4深層神經網絡
Week 4 傳送門 —>4.1 深層神經網絡
4.2 深層網絡中的前向傳播
4.3 核對矩陣的維數
4.4 為什么使用深層表示
4.5 搭建深層神經網絡塊
4.6 前向和反向傳播
4.7 參數 vs. 超參數
4.8 這和大腦有什么關系
4.9 總結習題
采訪大牛采訪
傳送門 —>Geoffery Hinton
Pieter Abbeel
Ian Goodfellow

總結

以上是生活随笔為你收集整理的0.0 目录-深度学习第三课《结构化机器学习项目》-Stanford吴恩达教授的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。