日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

【Paper】2020_Event-Triggered Time-Varying Formation Control for Discrete-Time Multi-Agent Systems wit

發布時間:2025/4/5 编程问答 22 豆豆
生活随笔 收集整理的這篇文章主要介紹了 【Paper】2020_Event-Triggered Time-Varying Formation Control for Discrete-Time Multi-Agent Systems wit 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

Z. Yan, L. Han, X. Li, X. Dong, Q. Li and Z. Ren, “Event-Triggered Time-Varying Formation Control for Discrete-Time Multi-Agent Systems with Communication Delays,” 2020 Chinese Automation Congress (CAC), 2020, pp. 6707-6711, doi: 10.1109/CAC51589.2020.9326758.

文章目錄

  • I. Introduction
  • II. Preliminaries
    • A. Graph theory and notations
    • B. Problem description
  • III. Main results
    • A. Event-triggered control protocol
    • B. Stability analysis
  • IV. Simulation
  • V. Conclusion

I. Introduction

II. Preliminaries

A. Graph theory and notations

W=[wij]∈RN×NW = [w_{ij}] \in \R^{N \times N}W=[wij?]RN×N is adjacency matrix.

SSS is in-degree matrix.

Laplacian L=S?WL = S - WL=S?W

B. Problem description

xi(k+1)=xi(k)+vi(k)Tvi(k+1)=vi(k)+ui(k)T(1)\begin{aligned} x_i(k+1) &= x_i(k) + v_i(k) T \\ v_i(k+1) &= v_i(k) + u_i(k) T \\ \tag{1} \end{aligned}xi?(k+1)vi?(k+1)?=xi?(k)+vi?(k)T=vi?(k)+ui?(k)T?(1)

III. Main results

A. Event-triggered control protocol

ui(k)=K2∑j∈Niwij[Ak?kmi(Ψi(kmi?τ)?hi(kmi?τ))?Ak?kmi(Ψj(kmj?τ)?hj(kmj?τ))]+[hiv(k+1)?hiv(k)]/T+K1(Ψi(k)?hi(k))(7)\begin{aligned} u_i(k) &= K_2 \sum_{j\in N_i} w_{ij} [A^{k - k_m^i} (\varPsi_i(k_m^i - \tau) - h_i(k_m^i - \tau)) - A^{k - k_m^i} (\varPsi_j(k_m^j - \tau) - h_j(k_m^j - \tau))] \\ &+ [h_{iv} (k+1) - h_{iv}(k)] / T \\ &+ K_1 (\varPsi_i(k) - h_i(k)) \tag{7} \end{aligned}ui?(k)?=K2?jNi??wij?[Ak?kmi?(Ψi?(kmi??τ)?hi?(kmi??τ))?Ak?kmi?(Ψj?(kmj??τ)?hj?(kmj??τ))]+[hiv?(k+1)?hiv?(k)]/T+K1?(Ψi?(k)?hi?(k))?(7)

先簡化一下
ui(k)=K2∑j∈Niwij[A(Ψi?hi)?A(Ψj?hj)]+[hiv(k+1)?hiv(k)]/T+K1(Ψi(k)?hi(k))(7)\begin{aligned} u_i(k) &= K_2 \sum_{j\in N_i} w_{ij} [A (\varPsi_i - h_i) - A (\varPsi_j - h_j)] \\ &+ [h_{iv} (k+1) - h_{iv}(k)] / T \\ &+ K_1 (\varPsi_i(k) - h_i(k)) \tag{7} \end{aligned}ui?(k)?=K2?jNi??wij?[A(Ψi??hi?)?A(Ψj??hj?)]+[hiv?(k+1)?hiv?(k)]/T+K1?(Ψi?(k)?hi?(k))?(7)

本質上還是個普通的分布式協議,加上了個期望速度補償項,還有個啥暫時還不知道。

寫了下程序,明白了,回來再補充下,最后一項就是自身與期望編隊的誤差。


接下來看一下事件觸發機制。

fi(k,ei(k))=∥ei(k)∥?cαk(8)f_i(k, e_i(k)) = \| e_i(k) \| - c \alpha^k \tag{8}fi?(k,ei?(k))=ei?(k)?cαk(8)

ei(k)=Ak?kmi(Ψi(kmi?τ)?hi(kmi?τ))?(Ψi(k)?hi(k))e_i(k) = A^{k - k_m^i} (\varPsi_i(k_m^i - \tau) - h_i(k_m^i - \tau)) - (\varPsi_i(k) - h_i(k))ei?(k)=Ak?kmi?(Ψi?(kmi??τ)?hi?(kmi??τ))?(Ψi?(k)?hi?(k))

B. Stability analysis

IV. Simulation

t = 30s 時的仿真效果

t = 50s 時的仿真效果

V. Conclusion

總結

以上是生活随笔為你收集整理的【Paper】2020_Event-Triggered Time-Varying Formation Control for Discrete-Time Multi-Agent Systems wit的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。