日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

用神经网络学习Fe原子光谱并反向求导计算权重

發(fā)布時間:2025/4/5 编程问答 25 豆豆
生活随笔 收集整理的這篇文章主要介紹了 用神经网络学习Fe原子光谱并反向求导计算权重 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

首先構造一個1*26*26的神經網絡



根據鐵的發(fā)射光譜


強度*波長10^-10m*歸一化
1000P2483.2708y00.566498
600P2488.1426y10.56761
500P2490.6443y20.56818
400P2522.8494y30.575527
400P2719.0273y40.62028
300P2788.1047y50.636039
400P3440.606y60.784891
600P3581.1931y70.816963
600P3719.9348y80.848613
700P3734.8638y90.852019
600P3737.1316y100.852536
600P3745.5613y110.854459
400P3749.4854y120.855355
300P3758.2329y130.85735
500P3820.4253y140.871538
500P3859.9114y150.880546
300P4045.8125y160.922955
200P4383.5449y171



讓x0=sigmoid(26),讓y0的目標函數等于0.566498( 2483.2708 / 4383.5449),并依次讓y17的目標函數等于1. y18-y25=0,讓學習率等于0.1,采用隨機梯度下降法迭代。


這個網絡是可以收斂的比如其中的一組數據


輸出*目標函數迭代次數換算輸出真實值*誤差
0.56526600.5664983153397642477.8672483.271y00.002176
0.56768610.5676096993397642488.4782488.143y10.000135
0.56889420.5681804013397642493.7722490.644y20.001256
0.5736430.5755272183397642514.5772522.849y30.003279
0.6190540.6202804723397642713.6352719.027y40.001983
0.63682650.6360388143397642791.5562788.105y50.001238
0.78649660.7848912423397643447.6433440.606y60.002045
0.81740470.8169627963397643583.1263581.193y70.00054
0.85047780.8486133683397643728.1043719.935y80.002196
0.85294190.8520190593397643738.9043734.864y90.001082
0.852904100.8525364033397643738.7433737.132y100.000431
0.855403110.8544594353397643749.6963745.561y110.001104
0.856492120.8553546243397643754.4713749.485y120.00133
0.857735130.8573501553397643759.9213758.233y130.000449
0.873373140.8715378513397643828.4693820.425y140.002106
0.882092150.8805456523397643866.6883859.911y150.001756
0.924514160.9229545023397644052.6494045.813y160.00169
0.9999911713397644383.5044383.545y179.26E-06


在網絡迭代了339764次以后得到這組數據,y0-y17的輸出值與目標函數的誤差最大小于0.4%,誤差平均0.14%。比如第一組數據目標函數是0.566498315,網絡輸出是0.565266,將這兩個值都*4383.545,得到輸出值2477.867,真實測量的值是2483.271,誤差是0.2176%。

并且可以很容易的導出當網絡收斂時的權重值。按照平方映射的原理,神經網絡的權重與輸出是一一對應的關系,也就是對一個輸出與其對應的權重的解是唯一的。

也就是說函數

f(26,w1,w2)=[y0,y17]

的解數組w1,w2是唯一的。

W1[1*26]第一層權重

W2[26*26]第二層權重

鐵在激發(fā)態(tài)的發(fā)射光譜是唯一的,與之對應的概率幅應該也是唯一的。現在解Fe的薛定諤方程是不可能的,但解一個1*26*26的神經網絡是可能的,如果把權重理解成是概率幅這個1*26*26的假想原子的概率幅就是數組w1。


w1w2
-28923113440.09
-1842765746.641
-150364-3681.14
-315329-13240.5
-308674-13222.6
-18715661710.62
-23231225977.4
-1491441457.193
-331982-4799.87
-9.9601539776.41
-3083287400.994
-31642223767.48
-30950532589.59
-89258.646552.49
-99351.138326.61
-162172126244.2
-31395.472932.22
-23944858161.51
-325371-129198
-389070-94858.2
-175706-104918
-206652-113942
-188505-138800
-280748-123848
-207741-126320
-238336-147196
?34878.72
?29346.68
?-17743.7
?14090.25
?-1928.21
?74673.72
?38424.44
?21401.24
?8041.499
?47601.46
?-29088.4
?-28228.9
?4495.003
?6256.264
?3489.706
?57591.33
?105921.2
?67575.13
?-132246
?-94526.6
?-113108
?-117161
?-133005
?-128110
?-124757
?-138847
?12553.36
?8697.032
?-8757.7
?1114.923
?1649.876
?24914.72
?19867.4
?16915.61
?16274.64
?25312.21
?28995.74
?41878.13
?31661.42
?42582.78
?33261.61
?74445.68
?22340.78
?24146.83
?-68853.2
?-41682.3
?-60919.5
?-61177
?-61013.6
?-67413.6
?-64074.2
?-61696.8
?17144.49
?11957.47
?-9903.28
?-14209.4
?-19048.3
?64128.1
?25608.63
?-1193.35
?-6075.69
?38875.13
?-233.775
?24321.83
?24884.13
?40816.1
?30174.92
?131885.9
?85056.81
?67387.23
?-163971
?-107928
?-142048
?-145082
?-155942
?-158832
?-153632
?-160109
?7402.726
?5382.465
?-7468.57
?-9765.08
?-3514.59
?58885.49
?26058.19
?4135.339
?8605.426
?36730.19
?31609.26
?59129.38
?50163.73
?69423.76
?52633.26
?149443.2
?57875.75
?52487.78
?-144531
?-90199.5
?-126735
?-127869
?-131648
?-140167
?-134523
?-133676
?19218.97
?14972.73
?-13098.4
?-5562.89
?-11048
?30910.07
?24608.65
?20978
?14304.34
?35232.98
?19860.11
?35075.26
?25597.94
?38761.39
?29535.95
?85661.85
?48124.46
?43343.23
?-107806
?-68081.1
?-95498.9
?-95807.3
?-97629.3
?-105486
?-99882.4
?-99158.9
?48203.37
?29100.31
?-14832.4
?-6878.44
?-26974.9
?46153.77
?48171.35
?73608.98
?36427.92
?80652.17
?-7061.46
?-41091
?17810.44
?17218.54
?21821.69
?25492.75
?118774.4
?81588.86
?-108996
?-101524
?-82996.6
?-96469.2
?-139470
?-104168
?-110862
?-154688
?17423.11
?35814.79
?-6881.36
?7360.52
?18821.53
?7765.998
?83040.39
?76254.57
?69664.26
?101626.1
?97091.59
?86469.19
?95904.32
?98033.71
?102040.1
?65192.8
?45933.59
?157684.1
?-115257
?-158816
?-92536.3
?-114219
?-175995
?-125579
?-129516
?-208219
?1545.673
?8400.948
?-10857.3
?952.6439
?10206.8
?61997.5
?25241.1
?3808.554
?18224.17
?30874.29
?37400.02
?69051.72
?54584.66
?74190.62
?52055.38
?145045.3
?53471.71
?47635.22
?-150416
?-81975.5
?-140083
?-133434
?-117997
?-147221
?-133887
?-114198
?4649.505
?4702.019
?4587.002
?5212.054
?8364.657
?9651.707
?22400.04
?26041.01
?30124.08
?30561.65
?30705.45
?30952.87
?31337.41
?31637.91
?33698.22
?35174.17
?44386.12
?226564.8
?-228219
?-225025
?-227148
?-231361
?-233101
?-239739
?-227776
?-239525
?52035.31
?32856.45
?-19991.1
?18818.39
?814.3729
?101355
?55014.28
?51523.93
?31064.8
?73632.97
?-30028.2
?-52511.8
?23145.56
?15889.04
?16278.21
?54739.8
?137544.3
?83833.1
?-146056
?-111760
?-121714
?-129022
?-156236
?-140310
?-140177
?-166040
?9213.466
?4361.307
?-3524.05
?6123.005
?16600.3
?85422.57
?33350.49
?354.9062
?8633.272
?40596.96
?33615.44
?56354.05
?63238.54
?80619.22
?63428.38
?162250.3
?62843.14
?51074.04
?-132280
?-89761.2
?-110442
?-116605
?-132719
?-126978
?-127334
?-138640
?7004.421
?9723.781
?-11834.4
?4467.904
?12590.27
?64087.16
?28024.76
?6912.146
?20186.44
?33466.08
?42195.79
?73485.8
?58558.33
?78665.17
?56534.08
?149946.6
?51125.88
?46744.12
?-148125
?-81476.3
?-137035
?-131369
?-117866
?-144864
?-132701
?-114774
?35900.91
?40081.74
?-17945.5
?-10149.9
?-24179.7
?24370.28
?55907.63
?82169.72
?51242.74
?87669.74
?20863.86
?7657.828
?25117.61
?36531.57
?31552.98
?47092.71
?107150.2
?92600
?-148226
?-115600
?-127121
?-133001
?-155327
?-146506
?-141339
?-165403
?12859.11
?37619.66
?-18245.8
?-10332.2
?-12099.6
?15377.91
?48067.23
?62273.55
?42682.47
?63883.65
?43234.9
?54323.33
?30925.88
?50642.69
?41085.14
?65248.93
?45510.22
?52641.71
?-96908.2
?-76134.7
?-77593.8
?-88135.9
?-109058
?-98664.7
?-96894
?-117113
?22825.76
?17134.89
?-13886.6
?-22728.6
?-32244.4
?-1524.18
?29358.27
?44342.43
?20261.71
?48645.27
?29943.52
?38850.8
?20175.39
?35168.2
?31759.42
?71177.56
?38746.89
?44928.76
?-87195.1
?-68419.5
?-69021.9
?-77775.8
?-98989.4
?-85361.4
?-87276.1
?-106615
?41125.82
?51626.06
?-33500.2
?-24125.6
?-43478.8
?-10845.3
?44229.09
?84828.62
?51480.22
?74952.73
?52296.76
?62026.75
?20098.91
?33963.26
?47856.54
?25742.37
?76574.29
?119045.4
?-123962
?-129419
?-101045
?-115064
?-155374
?-126276
?-129794
?-171609
?-85902.5
?-25158.2
?76440.13
?-52602.8
?29253.15
?-4454.2
?19304.26
?75014.19
?86767.77
?112646.7
?145740.3
?78813.91
?140008.8
?187674.8
?148589.3
?95599.59
?150220.8
?140633.6
?-117499
?-139229
?-97341.1
?-105208
?-160190
?-111607
?-116344
?-186222
?-93090.6
?-31680.8
?87593.66
?-49976.1
?41725.92
?8538.181
?21905.49
?75180.55
?90450.28
?120976.6
?164210.9
?88170.44
?161841.1
?214025.4
?171666.6
?112675.6
?158302.3
?146657.9
?-108050
?-144825
?-83440.5
?-96536.1
?-166811
?-101009
?-112042
?-198277
?5696.335
?10474.02
?-7181.84
?9643.025
?17282.09
?101495.4
?32138.04
?-13039.9
?496.1402
?36699.52
?14200.66
?45406.29
?51737.87
?70141.7
?49928.36
?168010.8
?87931.66
?64589.25
?-172864
?-108588
?-151783
?-152759
?-157852
?-167228
?-160383
?-160317
?24226.68
?17457.24
?-17615.8
?-31166.5
?-40528.2
?14857.36
?32210.46
?39893.35
?18333.73
?54678.06
?32032.34
?52880.43
?29017.32
?49460.85
?40920.75
?116589.4
?58704.66
?61916.61
?-143471
?-98066.6
?-121935
?-127583
?-141956
?-140274
?-136802
?-147552
?15114.04
?8729.593
?-6724.16
?-22544.7
?-25961.1
?32414.23
?27477.76
?21721.96
?5179.487
?45878.7
?15316.83
?26068.76
?26350.52
?40224.01
?35477.78
?101227.3
?60941.43
?54264.52
?-108763
?-85892.3
?-84943.5
?-96170.3
?-125452
?-104569
?-109000
?-135235
?10147.83
?7712.585
?-4616.55
?-14169.6
?-15336.7
?37159.41
?23214.36
?14387.2
?4406.055
?37435.1
?8118.148
?15608.35
?22927.4
?33363.03
?28232.04
?82892.98
?58838.11
?47852.96
?-95864
?-73928.6
?-76701
?-84756.1
?-106943
?-92211.2
?-94576.5
?-114449
?11294.53
?9045.65
?-4870.6
?-8602.18
?-11525.4
?63683.67
?23311.12
?-5010.18
?-10545.8
?33939.74
?-10249.8
?5310.051
?18277.84
?28995.02
?22365.24
?106064.2
?80878.04
?58604.43
?-128281
?-93029.9
?-105602
?-113176
?-135164
?-123151
?-124041
?-142447
?11991.31
?14197.69
?-11015.7
?6317.796
?4040.614
?52657
?22172.58
?4776.338
?7775.326
?26648.3
?4546.519
?20721.85
?22886.13
?32736.44
?21631.08
?83241.72
?59419.27
?43390.68
?-113153
?-67802.3
?-102827
?-100355
?-96549.6
?-110433
?-102475
?-96114.5
?12242.91
?7614.779
?-4394.28
?-3674.84
?-2296.06
?55946.06
?26251.93
?8657.254
?5245.345
?37446.02
?13198.73
?23937.86
?34419.45
?46025.8
?37246.43
?103800.2
?62617.83
?48950.08
?-106807
?-77880.6
?-87704
?-94293.2
?-113027
?-102598
?-103806
?-119646



總結

以上是生活随笔為你收集整理的用神经网络学习Fe原子光谱并反向求导计算权重的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。