日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

输入对5层网络迭代次数的影响

發布時間:2025/4/5 编程问答 43 豆豆
生活随笔 收集整理的這篇文章主要介紹了 输入对5层网络迭代次数的影响 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

制作一個5層網絡和一個3層網絡

圖中左邊的5層網絡很顯然可以看作是由兩個右邊的3層網絡組合而成,所以左邊的網絡的迭代次數和右邊的網絡的迭代次數有什么關系?

在《測量一組5層網絡的迭代次數》測量了輸入固定為0.1時5層網絡和3層網絡收斂迭代次數之間的關系。本文測量當輸入是0-1之間的隨機數時對迭代次數的影響。

將左邊的5層網絡寫成

(r)-3*6*3*6*3-(3*k),k∈{0,1}

意思是向網絡輸入0到1的隨機數r,輸出是1,0,0。

右邊的3層網絡寫成

(r)-3*6*3-(3*k),k∈{0,1}

其中r的初始化方法是

Random rand1 =new Random();

int ti1=rand1.nextInt(98)+1;

r=((double)ti1/100);

?

用這種辦法制作了三組網絡

(r)-2-10-2-10-2-(2*k),k∈{0,1}

(r)-2-10-2-(2*k),k∈{0,1}

?

(r)-3-10-3-10-3-(3*k),k∈{0,1}

(r)-3-10-3-(3*k),k∈{0,1}

?

(r)-4-10-4-10-4-(4*k),k∈{0,1}

(r)-4-10-4-(4*k),k∈{0,1}

用來比較

(r)-x-10-x-10-x-(x*k),k∈{0,1}

(r)-x-10-x-(x*k),k∈{0,1}

這兩類網絡迭代次數的關系。

具體的實驗過程

網絡的收斂標準是

if (Math.abs(f4[0]-y[0])< δ? &&? Math.abs(f4[1]-y[1])< δ? &&? Math.abs(f4[2]-y[2])< δ? )

因為對應每個收斂標準δ都有一個特征的迭代次數n與之對應因此可以用迭代次數曲線n(δ)來評價網絡性能。

具體進樣順序

???

δ=0.5

迭代次數

?

r

1

判斷是否達到收斂

梯度下降

???

r

2

判斷是否達到收斂

梯度下降

???

……

???

每當網路達到收斂標準記錄迭代次數

將這一過程重復199次

??

δ=0.4

???

……

???

δ=1e-7

???

本文嘗試了δ從1e-7到0.5的共35個值,當網絡滿足條件收斂是記錄迭代次數

首先觀察5層網絡迭代次數的變化

?

r-2-10-2-10-2

r-3-10-3-10-3

r-4-10-4-10-4

???

0.1-2-10-2-10-2

0.1-3-10-3-10-3

0.1-4-10-4-10-4

?????

δ

迭代次數n

迭代次數n

迭代次數n

r2/r2

r3/r2

r4/r2

δ

迭代次數n

迭代次數n

迭代次數n

0.1-2/0.1-2

0.1-3/0.12

0.1-4/0.1-2

r-2/0.1-2

r-3/0.1-3

r-4/0.1-4

0.5

1.904522613

1.869346734

3

1

0.981530343

1.575197889

0.5

1.934673367

1.959798995

3

1

1.012987013

1.550649351

0.984415584

0.953846154

1

0.4

5.341708543

5.331658291

7

1

0.998118532

1.310442145

0.4

5.371859296

5.341708543

7

1

0.994387278

1.303086997

0.994387278

0.998118532

1

0.3

10.34673367

10.22613065

12

1

0.988343856

1.159786304

0.3

10.27135678

10.18090452

11

1

0.991193738

1.070939335

1.007338552

1.004442251

1.090909091

0.2

18.70854271

18.30653266

20

1

0.978511953

1.069030352

0.2

18.66331658

18.52763819

20

1

0.99273021

1.071620894

1.002423263

0.988066178

1

0.1

40.25125628

38.37688442

38

1

0.953433208

0.944069913

0.1

40.10050251

38.36683417

39

1

0.956766917

0.972556391

1.003759399

1.000261952

0.974358974

0.01

325.8040201

268.6934673

235

1

0.824708876

0.721292512

0.01

325.6130653

268.5025126

237

1

0.824606078

0.727857771

1.000586447

1.000711184

0.991561181

0.001

2279.577889

1680.497487

1398

1

0.737196783

0.613271434

0.001

2280.115578

1684.38191

1406

1

0.738726548

0.616635408

0.999764183

0.997693859

0.9943101

1.00E-04

15912.24623

12004.45729

10590

1

0.75441626

0.665525146

1.00E-04

15835.47739

12056.8191

10609

1

0.76138021

0.669951384

1.004847902

0.995657079

0.998209068

9.00E-05

17423.96482

13189.36181

11673

1

0.756966738

0.669939369

9.00E-05

17342.0603

13253.43719

11717

1

0.764236599

0.675640598

1.004722883

0.995165376

0.996244773

8.00E-05

19282.14573

14663.1608

13043

1

0.760452753

0.676428868

8.00E-05

19208.1206

14739.47739

13077

1

0.767356562

0.680805805

1.003853846

0.9948223

0.997400015

7.00E-05

21687.30653

16544.53266

14783

1

0.762867101

0.681642968

7.00E-05

21562.95477

16633.47236

14844

1

0.771391145

0.688402872

1.005766917

0.994652969

0.995890596

6.00E-05

24788.30151

19034.80402

17128

1

0.767894646

0.690971102

6.00E-05

24676.82412

19138.08543

17197

1

0.775548966

0.696888705

1.004517493

0.994603357

0.995987672

5.00E-05

29117.86935

22492.8392

20378

1

0.772475449

0.699845162

5.00E-05

28974.85427

22613.09045

20480

1

0.780438453

0.706819776

1.004935834

0.994682228

0.995019531

4.00E-05

35437.03015

27629.55779

25185

1

0.779680399

0.710697254

4.00E-05

35289.97487

27783.49749

25306

1

0.787291507

0.717087504

1.004167055

0.994459312

0.995218525

3.00E-05

45809.18593

36073.57286

33209

1

0.787474654

0.724941937

3.00E-05

45565.71357

36295.21106

33318

1

0.796546531

0.731207686

1.005343324

0.993893459

0.996728495

2.00E-05

65988.56784

52783.36181

49229

1

0.799886458

0.746023161

2.00E-05

65556.1005

53122.43719

49468

1

0.810335526

0.754590337

1.006596905

0.993617097

0.995168594

1.00E-05

124218.0452

102095.9497

97192

1

0.821909164

0.782430603

1.00E-05

123256.9196

102725.196

97258

1

0.833423359

0.789067261

1.007797742

0.99387447

0.999321393

9.00E-06

136835.3719

112952.5578

107913

1

0.825463155

0.788633805

9.00E-06

135849.9447

113718.9146

108216

1

0.837092093

0.796584792

1.007253792

0.993260956

0.997200044

8.00E-06

152610.0352

126633.8995

121242

1

0.829787499

0.794456274

8.00E-06

151453.6382

127307.3518

121518

1

0.840569783

0.802344542

1.00763532

0.994710028

0.997728732

7.00E-06

172631.2513

143969.5829

138604

1

0.833971728

0.802890548

7.00E-06

171409.3065

144868.4121

139247

1

0.845160715

0.812365459

1.007128812

0.993795547

0.995382306

6.00E-06

199241.1256

167092.598

161638

1

0.838645122

0.811268254

6.00E-06

197814.8894

168071.0653

161784

1

0.849638093

0.817855524

1.007209954

0.994178253

0.999097562

5.00E-06

236247.5427

199373.392

193006

1

0.843917315

0.816965111

5.00E-06

234464.0503

200668.6884

193666

1

0.855861221

0.825994432

1.007606677

0.9935451

0.996592071

4.00E-06

291092.995

247769.0754

240321

1

0.851168113

0.825581529

4.00E-06

288965.3467

249317.9447

241691

1

0.862795306

0.836401329

1.007362988

0.993787574

0.994331605

3.00E-06

381793.9749

328359.2915

320678

1

0.860043147

0.839924203

3.00E-06

378816.8543

330180.2663

322513

1

0.871609229

0.851369194

1.007858997

0.994484907

0.994310307

2.00E-06

560602.8794

488816

481138

1

0.871947002

0.858251032

2.00E-06

556550.6985

491437.4623

482398

1

0.883005742

0.866763803

1.007280884

0.994665726

0.997388049

1.00E-06

1088196.508

969244.1558

962243

1

0.890688537

0.884254813

1.00E-06

1080983.186

974155.5427

964074

1

0.901175481

0.89184921

1.006672927

0.994958313

0.998100768

9.00E-07

1203908.025

1075569.915

1068340

1

0.893398742

0.88739337

9.00E-07

1208133.623

1080634.106

1072751

1

0.894465716

0.887940688

0.996502375

0.995313686

0.995888142

8.00E-07

1348428.719

1209469.04

1202423

1

0.89694696

0.891721589

8.00E-07

1353904.367

1215191.643

1206559

1

0.897546143

0.891170033

0.995955661

0.995290781

0.99657207

7.00E-07

1534027.111

1380826.05

1375220

1

0.900131451

0.896476985

7.00E-07

1539773.07

1387027.477

1381749

1

0.900799932

0.897371845

0.996268308

0.99552898

0.995274829

6.00E-07

1780354.844

1610095.312

1601415

1

0.904367642

0.899492034

6.00E-07

1786506.508

1616167.709

1606431

1

0.904652573

0.899202434

0.996556596

0.996242719

0.99687755

5.00E-07

2125035.533

1929071.94

1927719

1

0.907783381

0.907146714

5.00E-07

2133555.362

1937818.854

1931582

1

0.90825806

0.905334839

0.996006746

0.995486207

0.998000085

4.00E-07

2637184.055

2409909.352

2410357

1

0.913819173

0.913988918

4.00E-07

2646545.613

2418741.794

2414921

1

0.913924091

0.9124804

0.996462726

0.996348332

0.998110083

3.00E-07

3488346.553

3209632.161

3220585

1

0.920101289

0.923241126

3.00E-07

3500985.513

3222108.256

3226161

1

0.920343213

0.921500814

0.996389885

0.996127971

0.99827163

2.00E-07

5184203.387

4811423.382

4829216

1

0.928093098

0.931525181

2.00E-07

5199169.422

4828569.704

4839273

1

0.928719438

0.930778093

0.997121457

0.996448985

0.997921795

1.00E-07

1.02E+07

9627046.156

9688361

1

0.943828055

0.949839314

1.00E-07

1.03E+07

9653872.432

9700878

1

0.937269168

0.941832816

0.990291262

0.99722119

0.998709704

?

很明顯當δ<0.1時

r-2-10-2-10-2 ?> ?r-3-10-3-10-3 ?> ?r-4-10-4-10-4

也就是輸入層節點數越少迭代次數越多。

與當輸入固定為0.1的數據比較

δ<0.01時

這組數據同樣滿足輸入層節點數越少迭代次數越多的規律。

再比較隨機輸入與固定輸入迭代次數之間的比例關系(r)-x-10-x-10-x-(x*k),k∈{0,1}? ???/?? 0.1-x-10-x-10-x-(x*k),k∈{0,1}

從圖中明顯的觀察到隨機輸入網絡(r)-x-10-x-10-x-(x*k),k∈{0,1}的迭代次數是要稍小于固定輸入網絡0.1-x-10-x-10-x-(x*k),k∈{0,1}的迭代次數。隨機輸入網絡的迭代次數大概要比固定輸入0.1的網絡的迭代次數要少0.5%。

??????????

然后再比較3層網絡的數據

?

r-2-10-2

r-3-10-3

r-4-10-4

?

?

?

?

0.1-2-10-2

0.1-3-10-3

0.1-4-10-4

?

?

?

?

?

?

δ

迭代次數n

迭代次數n

迭代次數n

r2/r2

r3/r2

r4/r2

δ

迭代次數n

迭代次數n

迭代次數n

0.1-2/0.1-2

0.1-3/0.12

0.1-4/0.1-2

r-2/0.1-2

r-3/0.1-3

r-4/0.1-4

0.5

1.869346734

2.040201005

3

1

1.091397849

1.604838709

0.5

1.834170854

2.150753769

4

1

1.17260274

2.180821918

1.019178083

0.948598131

0.75

0.4

5.316582915

5.577889447

7

1

1.049149338

1.316635161

0.4

5.467336683

5.668341709

7

1

1.036764706

1.280330882

0.972426471

0.984042553

1

0.3

10.34673367

10.4321608

12

1

1.008256435

1.159786304

0.3

10.3718593

10.52763819

12

1

1.015019379

1.156976744

0.997577519

0.990930787

1

0.2

18.5678392

18.48241206

20

1

0.995399188

1.077131258

0.2

18.98492462

19.09547739

21

1

1.005823187

1.106140815

0.978030704

0.967894737

0.952380952

0.1

39.7839196

38.00502513

42

1

0.955286093

1.055702918

0.1

41.81407035

41.92964824

43

1

1.002764091

1.028361976

0.951448143

0.906399808

0.976744186

0.01

326.8140704

281.0904523

347

1

0.860092872

1.061765791

0.01

405.9145729

400.9246231

397

1

0.987706897

0.978038303

0.805130173

0.701105485

0.874055416

0.001

2555.768844

1994.175879

2942

1

0.78026457

1.151121318

0.001

3909.160804

3785.150754

3660

1

0.968277066

0.936262329

0.653789642

0.526841864

0.803825137

1.00E-04

21902.38693

16359.0402

23884

1

0.74690673

1.090474754

1.00E-04

38025.66332

35887.74372

33662

1

0.943776928

0.885244255

0.575989609

0.455839195

0.709524092

9.00E-05

23880.13568

18649.9598

37315

1

0.780982154

1.562595812

9.00E-05

42192.34171

39777.31156

37338

1

0.94276141

0.884947327

0.565982705

0.468859233

0.999384006

8.00E-05

27373.11558

20427.95477

26333

1

0.74627803

0.962002295

8.00E-05

47395.70352

44621.80905

41802

1

0.941473715

0.881978679

0.57754424

0.45780203

0.629945936

7.00E-05

30471.34171

23575.8593

46405

1

0.77370598

1.522906357

7.00E-05

54052.65327

50836.96482

47443

1

0.940508222

0.877718246

0.563734431

0.463754266

0.978121114

6.00E-05

33747.86935

26453.01508

43844

1

0.783842524

1.299163498

6.00E-05

62950.38191

59079.18593

55259

1

0.938504011

0.877818344

0.536102694

0.44775524

0.793427315

5.00E-05

41400.74372

31641.95477

57098

1

0.764284695

1.379153968

5.00E-05

75340.25628

70575.01005

65584

1

0.936750332

0.870504074

0.549516895

0.448345027

0.870608685

4.00E-05

50904.86935

38461.94975

63706

1

0.755565238

1.251471634

4.00E-05

93917.48744

87725.11558

81242

1

0.934065827

0.865035918

0.542016942

0.438437151

0.784151055

3.00E-05

68669.09045

51233.01508

102785

1

0.746085535

1.496816098

3.00E-05

124764.8342

116155.4975

107253

1

0.930995486

0.859641266

0.550388183

0.441072667

0.958341492

2.00E-05

98491.42211

74906.1206

131495

1

0.760534461

1.335090886

2.00E-05

186176.5779

172366.9598

158480

1

0.925825159

0.851234896

0.529021552

0.434573544

0.829726148

1.00E-05

193272.4774

144249.7286

203355

1

0.746354217

1.0521674

1.00E-05

368710.8643

338333.7889

308464

1

0.917612747

0.836601331

0.524184384

0.426353304

0.65925035

9.00E-06

206907.4774

158850.8543

296829

1

0.767738587

1.434597743

9.00E-06

408984.0804

375023.1005

341247

1

0.916962587

0.83437722

0.505905944

0.423576185

0.869836218

8.00E-06

237203.201

180718.5427

363607

1

0.761872276

1.532892467

8.00E-06

459388.5276

420561.8643

382394

1

0.915481861

0.832397801

0.516345504

0.429707394

0.950870045

7.00E-06

269616.4372

202380.0402

421455

1

0.75062204

1.563165081

7.00E-06

524038.9497

478899.1457

435268

1

0.913861739

0.830602382

0.514496942

0.422594281

0.968265528

6.00E-06

308451.3015

240200

405253

1

0.778729086

1.313831383

6.00E-06

609813.0704

556314.598

504206

1

0.912270702

0.826820586

0.505812874

0.431770083

0.803744898

5.00E-06

366383.0905

279138.8844

438198

1

0.761877094

1.196010437

5.00E-06

729919.3065

664199.0553

600920

1

0.909962306

0.823269086

0.50195013

0.420263899

0.729211875

4.00E-06

441795.6482

344849.6935

733902

1

0.780563808

1.661179785

4.00E-06

909130.6181

825530.8241

744853

1

0.908044243

0.819302513

0.485953987

0.417730851

0.98529777

3.00E-06

587062.9196

459529.0302

747879

1

0.78275942

1.273933296

3.00E-06

1207124.558

1091742.894

980381

1

0.904416107

0.812162252

0.486331684

0.420913232

0.762845261

2.00E-06

881343.3819

672539.7437

1245116

1

0.763084806

1.412747886

2.00E-06

1799195.739

1619069.065

1449669

1

0.899884893

0.805731677

0.489854085

0.415386692

0.858896755

1.00E-06

1691667.427

1292568.874

2046819

1

0.764079779

1.209941722

1.00E-06

3559300.412

3175825.116

2818734

1

0.892261048

0.791934839

0.475280879

0.407002535

0.726148335

9.00E-07

1861192.327

1469246.196

2010564

1

0.789411269

1.080255904

9.00E-07

3947484.774

3517441.141

3123123

1

0.891058824

0.791167839

0.471488159

0.417703136

0.643767152

8.00E-07

2080246.372

1621744.271

2166817

1

0.779592404

1.041615565

8.00E-07

4433661.618

3943425.156

3493458

1

0.889428535

0.787939699

0.469193762

0.411252707

0.620249907

7.00E-07

2464329.97

1797949.739

3092601

1

0.72958969

1.254945984

7.00E-07

5056311.834

4490016.492

3972648

1

0.888002291

0.785680973

0.487376976

0.40043277

0.778473451

6.00E-07

2925796.92

2091886.859

2729326

1

0.714980197

0.93284875

6.00E-07

5882920.477

5216202.241

4605197

1

0.886668834

0.782807964

0.497337493

0.401036379

0.59266216

5.00E-07

3289760.563

2467525.844

3698517

1

0.750062443

1.124251121

5.00E-07

7040336.97

6225307.176

5492530

1

0.884234264

0.780151578

0.467273168

0.396370135

0.673372198

4.00E-07

4007427.271

3216941.045

5727957

1

0.802744711

1.429335235

4.00E-07

8766715.804

7731842.281

6800941

1

0.881954252

0.775768389

0.457118419

0.416063976

0.842230068

3.00E-07

5245088.296

4254122.518

6026219

1

0.811067856

1.14892613

3.00E-07

1.16E+07

1.02E+07

8973350

1

0.879310345

0.773564655

0.452162784

0.417070835

0.671568478

2.00E-07

7786895.241

5986582.417

1.07E+07

1

0.768802229

1.374103499

2.00E-07

1.73E+07

1.52E+07

1.32E+07

1

0.878612717

0.76300578

0.450109552

0.393854106

0.810606061

1.00E-07

1.58E+07

1.23E+07

2.71E+07

1

0.778481013

1.715189873

1.00E-07

3.42E+07

2.97E+07

2.58E+07

1

0.868421053

0.754385965

0.461988304

0.414141414

1.050387597

?

3層隨機輸入數據比較

r-2-10-2>r-3-10-3但r-4-10-4的數據變的不規則

3層固定輸入的數據

這個明顯的0.1-2-10-2>0.1-3-10-3>0.1-4-10-4,輸入節點數越少迭代次數越多。

比較隨機輸入和固定輸入的比值

若不考慮r-4和0.1-4的值

r-2/0.1-2? > r-3/0.1-3 的值但都接近0.5.

再比較3層網絡和5層網絡的迭代次數的比值

?

r-2-10-2

r-3-10-3

r-4-10-4

?

0.1-2-10-2

0.1-3-10-3

0.1-4-10-4

δ

r-2-10-2-10-2

r-3-10-3-10-3

r-4-10-4-10-4

δ

0.1-2-10-2-10-2

0.1-3-10-3-10-3

0.1-4-10-4-10-4

0.5

0.981530343

1.091397849

1

0.5

0.948051948

1.097435898

1.333333333

0.4

0.995296331

1.046182846

1

0.4

1.01777362

1.061147695

1

0.3

1

1.02014742

1

0.3

1.009784737

1.034057256

1.090909091

0.2

0.992479184

1.009607467

1

0.2

1.017232095

1.030648224

1.05

0.1

0.988389513

0.990310331

1.105263158

0.1

1.04273183

1.092861821

1.102564103

0.01

1.003100178

1.046138022

1.476595745

0.01

1.246616356

1.493187603

1.675105485

0.001

1.121158815

1.186658055

2.104434907

0.001

1.714457303

2.247204587

2.603129445

1.00E-04

1.376448467

1.36274717

2.255335222

1.00E-04

2.401295672

2.976551562

3.172966349

9.00E-05

1.37053397

1.414015331

3.196693224

9.00E-05

2.432948622

3.001282685

3.186651873

8.00E-05

1.419609413

1.393148111

2.018937361

8.00E-05

2.467482608

3.027367109

3.196604726

7.00E-05

1.405031172

1.424993971

3.139078671

7.00E-05

2.506736848

3.056305005

3.196106171

6.00E-05

1.361443394

1.389718279

2.559785147

6.00E-05

2.55099204

3.086995622

3.213293016

5.00E-05

1.421832869

1.406756812

2.801943272

5.00E-05

2.600194485

3.12098031

3.20234375

4.00E-05

1.436488022

1.392058101

2.529521541

4.00E-05

2.661307858

3.157454011

3.210384889

3.00E-05

1.499024465

1.420236783

3.095094703

3.00E-05

2.738129713

3.200298169

3.219070773

2.00E-05

1.492552806

1.419123717

2.67108818

2.00E-05

2.839958089

3.244711066

3.203687232

1.00E-05

1.555913049

1.412883949

2.092301836

1.00E-05

2.991400933

3.293581342

3.171605421

9.00E-06

1.512090584

1.406350218

2.750632454

9.00E-06

3.010557577

3.297807597

3.153387669

8.00E-06

1.554309326

1.42709451

2.999018492

8.00E-06

3.033195723

3.303515927

3.146809526

7.00E-06

1.561805497

1.405713875

3.040713111

7.00E-06

3.057237442

3.305752709

3.125869857

6.00E-06

1.548130691

1.437526275

2.507164157

6.00E-06

3.082746057

3.309996263

3.1165381

5.00E-06

1.550844027

1.400080932

2.270385377

5.00E-06

3.113139543

3.309928722

3.102867824

4.00E-06

1.517713088

1.391818947

3.053840488

4.00E-06

3.146157934

3.311156865

3.081840035

3.00E-06

1.537643227

1.39947016

2.332180567

3.00E-06

3.186565076

3.306505583

3.03981855

2.00E-06

1.572134954

1.375854603

2.587856291

2.00E-06

3.232761622

3.294557679

3.005130618

1.00E-06

1.55456061

1.333584388

2.127133167

1.00E-06

3.29265104

3.260080117

2.923773486

9.00E-07

1.545958901

1.366016449

1.881951439

9.00E-07

3.267423983

3.254978833

2.911321453

8.00E-07

1.542718827

1.34087291

1.80204221

8.00E-07

3.274722887

3.245105559

2.895389285

7.00E-07

1.606444862

1.30208272

2.248804555

7.00E-07

3.283803265

3.237150357

2.875086575

6.00E-07

1.643378526

1.299231694

1.704321491

6.00E-07

3.292974557

3.227512969

2.866725679

5.00E-07

1.548096732

1.279125881

1.918597576

5.00E-07

3.299814523

3.212533082

2.843539648

4.00E-07

1.519585735

1.334880518

2.376393621

4.00E-07

3.312512643

3.196638145

2.816216762

3.00E-07

1.503602987

1.325423695

1.871156638

3.00E-07

3.313352757

3.165629206

2.781432793

2.00E-07

1.502042775

1.244243531

2.215680558

2.00E-07

3.32745456

3.147930118

2.727682443

1.00E-07

1.549019608

1.277650465

2.79717075

1.00E-07

3.32038835

3.07648565

2.659553084

?

隨機輸入3層網絡的迭代次數是對應5層網絡的迭代次數的大約1.5倍左右

固定輸入3層網絡的迭代次數是對應5層網絡的迭代次數的3倍左右。

這組實驗表明3層網絡隨機輸入的迭代次數比固定輸入的迭代次數要小的多,甚至小于后者的50%。

而5層網絡的隨機輸入的迭代次數只比固定輸入的迭代次數略小,二者相差甚至小于1%,也就是5層網絡對輸入數據并不敏感。

?

實驗數據

學習率 0.1

權重初始化方式

Random rand1 =new Random();

int ti1=rand1.nextInt(98)+1;

int xx=1;

if(ti1%2==0)

{ xx=-1;}

tw[a][b]=xx*((double)ti1/1000);

?

?


dr-2-10-2-10-2?? ? ?? ? ?? ? ?? ? ?? ? ?? ? 
??? ? ?? ? ?? ? ?? ? ?? ? ?? ? ?? ? 
f2[0]?? ?f2[1]?? ?迭代次數n?? ?平均準確率p-ave?? ?δ?? ?耗時ms/次?? ?耗時ms/199次?? ?耗時 min/199
0.527608315?? ?0.472339838?? ?1.904522613?? ?0?? ?0.5?? ?0.412060302?? ?82?? ?0.001366667
0.619745309?? ?0.379034134?? ?5.341708543?? ?0?? ?0.4?? ?0.391959799?? ?78?? ?0.0013
0.712427458?? ?0.285357852?? ?10.34673367?? ?0?? ?0.3?? ?0.155778894?? ?31?? ?0.000516667
0.806808233?? ?0.19310006?? ?18.70854271?? ?0?? ?0.2?? ?0.236180905?? ?47?? ?0.000783333
0.902011379?? ?0.097776184?? ?40.25125628?? ?0?? ?0.1?? ?0.688442211?? ?142?? ?0.002366667
0.990027433?? ?0.009968527?? ?325.8040201?? ?0?? ?0.01?? ?3.015075377?? ?600?? ?0.01
0.999000529?? ?1.00E-03?? ?2279.577889?? ?0?? ?0.001?? ?15.2361809?? ?3047?? ?0.050783333
0.999900012?? ?1.00E-04?? ?15912.24623?? ?0?? ?1.00E-04?? ?91.9798995?? ?18304?? ?0.305066667
0.999910011?? ?9.00E-05?? ?17423.96482?? ?0?? ?9.00E-05?? ?98.45728643?? ?19609?? ?0.326816667
0.999920009?? ?8.00E-05?? ?19282.14573?? ?0?? ?8.00E-05?? ?109.1306533?? ?21733?? ?0.362216667
0.999930008?? ?7.00E-05?? ?21687.30653?? ?0?? ?7.00E-05?? ?122.4623116?? ?24370?? ?0.406166667
0.999940006?? ?6.00E-05?? ?24788.30151?? ?0?? ?6.00E-05?? ?140.6532663?? ?27990?? ?0.4665
0.999950004?? ?5.00E-05?? ?29117.86935?? ?0?? ?5.00E-05?? ?164.2462312?? ?32700?? ?0.545
0.999960004?? ?4.00E-05?? ?35437.03015?? ?0?? ?4.00E-05?? ?199.3969849?? ?39696?? ?0.6616
0.999970003?? ?3.00E-05?? ?45809.18593?? ?0?? ?3.00E-05?? ?259.8492462?? ?51720?? ?0.862
0.999980002?? ?2.00E-05?? ?65988.56784?? ?0?? ?2.00E-05?? ?375.7236181?? ?74778?? ?1.2463
0.999990001?? ?1.00E-05?? ?124218.0452?? ?0?? ?1.00E-05?? ?703.4974874?? ?140005?? ?2.333416667
0.999991001?? ?9.00E-06?? ?136835.3719?? ?0?? ?9.00E-06?? ?761.959799?? ?151639?? ?2.527316667
0.999992001?? ?8.00E-06?? ?152610.0352?? ?0?? ?8.00E-06?? ?861.0150754?? ?171358?? ?2.855966667
0.999993001?? ?7.00E-06?? ?172631.2513?? ?0?? ?7.00E-06?? ?972.6281407?? ?193560?? ?3.226
0.999994001?? ?6.00E-06?? ?199241.1256?? ?0?? ?6.00E-06?? ?1125.437186?? ?223962?? ?3.7327
0.999995001?? ?5.00E-06?? ?236247.5427?? ?0?? ?5.00E-06?? ?1336.170854?? ?265906?? ?4.431766667
0.999996001?? ?4.00E-06?? ?291092.995?? ?0?? ?4.00E-06?? ?1650.854271?? ?328528?? ?5.475466667
0.999997?? ?3.00E-06?? ?381793.9749?? ?0?? ?3.00E-06?? ?2128.020101?? ?423493?? ?7.058216667
0.999998?? ?2.00E-06?? ?560602.8794?? ?0?? ?2.00E-06?? ?3168.80402?? ?630608?? ?10.51013333
0.999999?? ?1.00E-06?? ?1088196.508?? ?0?? ?1.00E-06?? ?6009.703518?? ?1195947?? ?19.93245
0.9999991?? ?9.00E-07?? ?1203908.025?? ?0?? ?9.00E-07?? ?6628.276382?? ?1319028?? ?21.9838
0.9999992?? ?8.00E-07?? ?1348428.719?? ?0?? ?8.00E-07?? ?7429.336683?? ?1478438?? ?24.64063333
0.9999993?? ?7.00E-07?? ?1534027.111?? ?0?? ?7.00E-07?? ?8488.236181?? ?1689160?? ?28.15266667
0.9999994?? ?6.00E-07?? ?1780354.844?? ?0?? ?6.00E-07?? ?10088.17588?? ?2007549?? ?33.45915
0.9999995?? ?5.00E-07?? ?2125035.533?? ?0?? ?5.00E-07?? ?11910.59799?? ?2370210?? ?39.5035
0.9999996?? ?4.00E-07?? ?2637184.055?? ?0?? ?4.00E-07?? ?14739.1809?? ?2933128?? ?48.88546667
0.9999997?? ?3.00E-07?? ?3488346.553?? ?0?? ?3.00E-07?? ?19689.76382?? ?3918288?? ?65.3048
0.9999998?? ?2.00E-07?? ?5184203.387?? ?0?? ?2.00E-07?? ?29417.75377?? ?5854135?? ?97.56891667
0.9999999?? ?1.00E-07?? ?1.02E+07?? ?0?? ?1.00E-07?? ?54512.9598?? ?10848096?? ?180.8016
 ?? ? ?? ? ?? ? ?? ? ?? ? ?? ? ?? ? 
 ?? ? ?? ? ?? ? ?? ? ?? ? ?? ? ?? ?607.63275

dr-3-10-3-10-3?? ??? ??? ??? ??? ??? ??? ?
?? ??? ??? ??? ??? ??? ??? ??? ?
f2[0]?? ?f2[1]?? ?f2[2]?? ?迭代次數n?? ?平均準確率p-ave?? ?δ?? ?耗時ms/次?? ?耗時ms/199次?? ?耗時 min/199
0.526440336?? ?0.472256796?? ?0.472675861?? ?1.869346734?? ?0?? ?0.5?? ?0.472361809?? ?109?? ?0.001816667
0.620190597?? ?0.378660228?? ?0.381783874?? ?5.331658291?? ?0?? ?0.4?? ?0.155778894?? ?31?? ?0.000516667
0.713801296?? ?0.285566484?? ?0.287647306?? ?10.22613065?? ?0?? ?0.3?? ?0.236180905?? ?63?? ?0.00105
0.806969107?? ?0.192119984?? ?0.194035873?? ?18.30653266?? ?0?? ?0.2?? ?0.236180905?? ?47?? ?0.000783333
0.902155298?? ?0.097590075?? ?0.097948187?? ?38.37688442?? ?0?? ?0.1?? ?0.472361809?? ?94?? ?0.001566667
0.99004019?? ?0.009950875?? ?0.009949246?? ?268.6934673?? ?0?? ?0.01?? ?2.834170854?? ?564?? ?0.0094
0.99900074?? ?9.99E-04?? ?9.99E-04?? ?1680.497487?? ?0?? ?0.001?? ?13.06030151?? ?2600?? ?0.043333333
0.999900025?? ?1.00E-04?? ?1.00E-04?? ?12004.45729?? ?0?? ?1.00E-04?? ?78.81909548?? ?15700?? ?0.261666667
0.999910028?? ?9.00E-05?? ?9.00E-05?? ?13189.36181?? ?0?? ?9.00E-05?? ?77.22613065?? ?15383?? ?0.256383333
0.999920025?? ?8.00E-05?? ?8.00E-05?? ?14663.1608?? ?0?? ?8.00E-05?? ?85.75376884?? ?17067?? ?0.28445
0.999930019?? ?7.00E-05?? ?7.00E-05?? ?16544.53266?? ?0?? ?7.00E-05?? ?97.30150754?? ?19378?? ?0.322966667
0.999940016?? ?6.00E-05?? ?6.00E-05?? ?19034.80402?? ?0?? ?6.00E-05?? ?113.3366834?? ?22554?? ?0.3759
0.999950014?? ?5.00E-05?? ?5.00E-05?? ?22492.8392?? ?0?? ?5.00E-05?? ?133.7688442?? ?26620?? ?0.443666667
0.999960011?? ?4.00E-05?? ?4.00E-05?? ?27629.55779?? ?0?? ?4.00E-05?? ?163.120603?? ?32476?? ?0.541266667
0.999970009?? ?3.00E-05?? ?3.00E-05?? ?36073.57286?? ?0?? ?3.00E-05?? ?211.8140704?? ?42151?? ?0.702516667
0.999980007?? ?2.00E-05?? ?2.00E-05?? ?52783.36181?? ?0?? ?2.00E-05?? ?309.5376884?? ?61614?? ?1.0269
0.999990003?? ?1.00E-05?? ?1.00E-05?? ?102095.9497?? ?0?? ?1.00E-05?? ?599.5125628?? ?119303?? ?1.988383333
0.999991002?? ?9.00E-06?? ?9.00E-06?? ?112952.5578?? ?0?? ?9.00E-06?? ?670.1407035?? ?133358?? ?2.222633333
0.999992002?? ?8.00E-06?? ?8.00E-06?? ?126633.8995?? ?0?? ?8.00E-06?? ?757.7085427?? ?150784?? ?2.513066667
0.999993002?? ?7.00E-06?? ?7.00E-06?? ?143969.5829?? ?0?? ?7.00E-06?? ?875.2311558?? ?174172?? ?2.902866667
0.999994002?? ?6.00E-06?? ?6.00E-06?? ?167092.598?? ?0?? ?6.00E-06?? ?1003.854271?? ?199767?? ?3.32945
0.999995002?? ?5.00E-06?? ?5.00E-06?? ?199373.392?? ?0?? ?5.00E-06?? ?1183.085427?? ?235434?? ?3.9239
0.999996001?? ?4.00E-06?? ?4.00E-06?? ?247769.0754?? ?0?? ?4.00E-06?? ?1512.356784?? ?300976?? ?5.016266667
0.999997001?? ?3.00E-06?? ?3.00E-06?? ?328359.2915?? ?0?? ?3.00E-06?? ?1945.427136?? ?387140?? ?6.452333333
0.999998001?? ?2.00E-06?? ?2.00E-06?? ?488816?? ?0?? ?2.00E-06?? ?2507.829146?? ?499074?? ?8.3179
0.999999?? ?1.00E-06?? ?1.00E-06?? ?969244.1558?? ?0?? ?1.00E-06?? ?5722.160804?? ?1138710?? ?18.9785
0.9999991?? ?9.00E-07?? ?9.00E-07?? ?1075569.915?? ?0?? ?9.00E-07?? ?6469.055276?? ?1287342?? ?21.4557
0.9999992?? ?8.00E-07?? ?8.00E-07?? ?1209469.04?? ?0?? ?8.00E-07?? ?7172.030151?? ?1427234?? ?23.78723333
0.9999993?? ?7.00E-07?? ?7.00E-07?? ?1380826.05?? ?0?? ?7.00E-07?? ?8186.537688?? ?1629128?? ?27.15213333
0.9999994?? ?6.00E-07?? ?6.00E-07?? ?1610095.312?? ?0?? ?6.00E-07?? ?9600.678392?? ?1910545?? ?31.84241667
0.9999995?? ?5.00E-07?? ?5.00E-07?? ?1929071.94?? ?0?? ?5.00E-07?? ?11807.44221?? ?2349681?? ?39.16135
0.9999996?? ?4.00E-07?? ?4.00E-07?? ?2409909.352?? ?0?? ?4.00E-07?? ?14563.61809?? ?2898167?? ?48.30278333
0.9999997?? ?3.00E-07?? ?3.00E-07?? ?3209632.161?? ?0?? ?3.00E-07?? ?20176.22111?? ?4015080?? ?66.918
0.9999998?? ?2.00E-07?? ?2.00E-07?? ?4811423.382?? ?0?? ?2.00E-07?? ?28304.31156?? ?5632558?? ?93.87596667
0.9999999?? ?1.00E-07?? ?1.00E-07?? ?9627046.156?? ?0?? ?1.00E-07?? ?56264.20603?? ?11196577?? ?186.6096167
?? ??? ??? ??? ??? ??? ??? ??? ?
?? ??? ??? ??? ??? ??? ??? ??? ?599.0246833


dr-4-10-4-10-4?? ??? ??? ??? ??? ??? ??? ??? ?
?? ??? ??? ??? ??? ??? ??? ??? ??? ?
f2[0]?? ?f2[1]?? ?f2[2]?? ?f2[3]?? ?迭代次數n?? ?平均準確率p-ave?? ?δ?? ?耗時ms/次?? ?耗時ms/199次?? ?耗時 min/199
0.526261475?? ?0.470138296?? ?0.473433824?? ?0.470196578?? ?3?? ?0?? ?0.5?? ?0.72361809?? ?144?? ?0.0024
0.619481649?? ?0.377210594?? ?0.378727222?? ?0.378469657?? ?7?? ?0?? ?0.4?? ?0.155778894?? ?47?? ?0.000783333
0.713542792?? ?0.285969096?? ?0.285711052?? ?0.286628343?? ?12?? ?0?? ?0.3?? ?0.316582915?? ?63?? ?0.00105
0.808050416?? ?0.191568156?? ?0.192380965?? ?0.19206912?? ?20?? ?0?? ?0.2?? ?0.391959799?? ?78?? ?0.0013
0.902437476?? ?0.097327741?? ?0.097530188?? ?0.097340394?? ?38?? ?0?? ?0.1?? ?0.467336683?? ?109?? ?0.001816667
0.990051834?? ?0.00994703?? ?0.009956631?? ?0.009950273?? ?235?? ?0?? ?0.01?? ?2.462311558?? ?507?? ?0.00845
0.999001067?? ?9.99E-04?? ?9.99E-04?? ?9.99E-04?? ?1398?? ?0?? ?0.001?? ?12.98492462?? ?2584?? ?0.043066667
0.999900049?? ?1.00E-04?? ?9.99E-05?? ?9.99E-05?? ?10590?? ?0?? ?1.00E-04?? ?74.13065327?? ?14752?? ?0.245866667
0.999910044?? ?9.00E-05?? ?9.00E-05?? ?9.00E-05?? ?11673?? ?0?? ?9.00E-05?? ?77.95979899?? ?15529?? ?0.258816667
0.999920041?? ?8.00E-05?? ?8.00E-05?? ?8.00E-05?? ?13043?? ?0?? ?8.00E-05?? ?88.72361809?? ?17657?? ?0.294283333
0.999930029?? ?7.00E-05?? ?7.00E-05?? ?7.00E-05?? ?14783?? ?0?? ?7.00E-05?? ?100.798995?? ?20075?? ?0.334583333
0.999940023?? ?6.00E-05?? ?6.00E-05?? ?6.00E-05?? ?17128?? ?0?? ?6.00E-05?? ?115.5527638?? ?22995?? ?0.38325
0.999950023?? ?5.00E-05?? ?5.00E-05?? ?5.00E-05?? ?20378?? ?0?? ?5.00E-05?? ?141.6733668?? ?28193?? ?0.469883333
0.999960015?? ?4.00E-05?? ?4.00E-05?? ?4.00E-05?? ?25185?? ?0?? ?4.00E-05?? ?175.1155779?? ?34849?? ?0.580816667
0.999970011?? ?3.00E-05?? ?3.00E-05?? ?3.00E-05?? ?33209?? ?0?? ?3.00E-05?? ?230.638191?? ?45897?? ?0.76495
0.999980007?? ?2.00E-05?? ?2.00E-05?? ?2.00E-05?? ?49229?? ?0?? ?2.00E-05?? ?339.8190955?? ?67631?? ?1.127183333
0.999990004?? ?1.00E-05?? ?9.99E-06?? ?1.00E-05?? ?97192?? ?0?? ?1.00E-05?? ?671.6934673?? ?133680?? ?2.228
0.999991003?? ?9.00E-06?? ?9.00E-06?? ?9.00E-06?? ?107913?? ?0?? ?9.00E-06?? ?740.879397?? ?147437?? ?2.457283333
0.999992003?? ?8.00E-06?? ?8.00E-06?? ?8.00E-06?? ?121242?? ?0?? ?8.00E-06?? ?837.6030151?? ?166685?? ?2.778083333
0.999993002?? ?7.00E-06?? ?7.00E-06?? ?7.00E-06?? ?138604?? ?0?? ?7.00E-06?? ?956.9949749?? ?190442?? ?3.174033333
0.999994002?? ?6.00E-06?? ?6.00E-06?? ?6.00E-06?? ?161638?? ?0?? ?6.00E-06?? ?1119.080402?? ?222697?? ?3.711616667
0.999995002?? ?5.00E-06?? ?5.00E-06?? ?5.00E-06?? ?193006?? ?0?? ?5.00E-06?? ?1340.954774?? ?266862?? ?4.4477
0.999996001?? ?4.00E-06?? ?4.00E-06?? ?4.00E-06?? ?240321?? ?0?? ?4.00E-06?? ?1673.728643?? ?333072?? ?5.5512
0.999997001?? ?3.00E-06?? ?3.00E-06?? ?3.00E-06?? ?320678?? ?0?? ?3.00E-06?? ?2218.623116?? ?441506?? ?7.358433333
0.999998?? ?2.00E-06?? ?2.00E-06?? ?2.00E-06?? ?481138?? ?0?? ?2.00E-06?? ?3369.929648?? ?670625?? ?11.17708333
0.999999?? ?1.00E-06?? ?1.00E-06?? ?1.00E-06?? ?962243?? ?0?? ?1.00E-06?? ?6656.326633?? ?1324615?? ?22.07691667
0.9999991?? ?9.00E-07?? ?9.00E-07?? ?9.00E-07?? ?1068340?? ?0?? ?9.00E-07?? ?7402.738693?? ?1473150?? ?24.5525
0.9999992?? ?8.00E-07?? ?8.00E-07?? ?8.00E-07?? ?1202423?? ?0?? ?8.00E-07?? ?8283.81407?? ?1648481?? ?27.47468333
0.9999993?? ?7.00E-07?? ?7.00E-07?? ?7.00E-07?? ?1375220?? ?0?? ?7.00E-07?? ?9110.095477?? ?1812943?? ?30.21571667
0.9999994?? ?6.00E-07?? ?6.00E-07?? ?6.00E-07?? ?1601415?? ?0?? ?6.00E-07?? ?10525.52261?? ?2094580?? ?34.90966667
0.9999995?? ?5.00E-07?? ?5.00E-07?? ?5.00E-07?? ?1927719?? ?0?? ?5.00E-07?? ?12147.62312?? ?2417392?? ?40.28986667
0.9999996?? ?4.00E-07?? ?4.00E-07?? ?4.00E-07?? ?2410357?? ?0?? ?4.00E-07?? ?15609.35678?? ?3106310?? ?51.77183333
0.9999997?? ?3.00E-07?? ?3.00E-07?? ?3.00E-07?? ?3220585?? ?0?? ?3.00E-07?? ?20894.52261?? ?4158010?? ?69.30016667
0.9999998?? ?2.00E-07?? ?2.00E-07?? ?2.00E-07?? ?4829216?? ?0?? ?2.00E-07?? ?31439.65829?? ?6256492?? ?104.2748667
0.9999999?? ?1.00E-07?? ?1.00E-07?? ?1.00E-07?? ?9688361?? ?0?? ?1.00E-07?? ?64211.86432?? ?12778161?? ?212.96935
?? ??? ??? ??? ??? ??? ??? ??? ??? ?
?? ??? ??? ??? ??? ??? ??? ??? ??? ?665.2375


dr-2-10-2?? ??? ??? ??? ??? ??? ??? ?
?? ??? ??? ??? ??? ??? ??? ?
f2[0]?? ?f2[1]?? ?迭代次數n?? ?平均準確率p-ave?? ?δ?? ?耗時ms/次?? ?耗時ms/199次?? ?耗時 min/199
0.526584111?? ?0.470703963?? ?1.869346734?? ?0?? ?0.5?? ?0.472361809?? ?110?? ?0.001833333
0.61933022?? ?0.378788514?? ?5.316582915?? ?0?? ?0.4?? ?0.16080402?? ?47?? ?0.000783333
0.714022291?? ?0.285632622?? ?10.34673367?? ?0?? ?0.3?? ?0.08040201?? ?31?? ?0.000516667
0.806512411?? ?0.192506914?? ?18.5678392?? ?0?? ?0.2?? ?0.16080402?? ?47?? ?0.000783333
0.902097214?? ?0.097758283?? ?39.7839196?? ?0?? ?0.1?? ?0.236180905?? ?47?? ?0.000783333
0.99003051?? ?0.009968748?? ?326.8140704?? ?0?? ?0.01?? ?1.487437186?? ?312?? ?0.0052
0.999000471?? ?1.00E-03?? ?2555.768844?? ?0?? ?0.001?? ?9.201005025?? ?1831?? ?0.030516667
0.999900011?? ?1.00E-04?? ?21902.38693?? ?0?? ?1.00E-04?? ?62.85427136?? ?12508?? ?0.208466667
0.999910009?? ?9.00E-05?? ?23880.13568?? ?0?? ?9.00E-05?? ?63.48743719?? ?12634?? ?0.210566667
0.999920007?? ?8.00E-05?? ?27373.11558?? ?0?? ?8.00E-05?? ?73.70854271?? ?14669?? ?0.244483333
0.999930008?? ?7.00E-05?? ?30471.34171?? ?0?? ?7.00E-05?? ?82.66834171?? ?16466?? ?0.274433333
0.999940006?? ?6.00E-05?? ?33747.86935?? ?0?? ?6.00E-05?? ?89.8241206?? ?17875?? ?0.297916667
0.999950004?? ?5.00E-05?? ?41400.74372?? ?0?? ?5.00E-05?? ?111.1809045?? ?22141?? ?0.369016667
0.999960004?? ?4.00E-05?? ?50904.86935?? ?0?? ?4.00E-05?? ?139.040201?? ?27672?? ?0.4612
0.999970002?? ?3.00E-05?? ?68669.09045?? ?0?? ?3.00E-05?? ?184.2763819?? ?36671?? ?0.611183333
0.999980001?? ?2.00E-05?? ?98491.42211?? ?0?? ?2.00E-05?? ?266.6532663?? ?53096?? ?0.884933333
0.999990001?? ?1.00E-05?? ?193272.4774?? ?0?? ?1.00E-05?? ?524.718593?? ?104451?? ?1.74085
0.999991001?? ?9.00E-06?? ?206907.4774?? ?0?? ?9.00E-06?? ?558.1105528?? ?111064?? ?1.851066667
0.999992001?? ?8.00E-06?? ?237203.201?? ?0?? ?8.00E-06?? ?642.5778894?? ?127873?? ?2.131216667
0.999993?? ?7.00E-06?? ?269616.4372?? ?0?? ?7.00E-06?? ?727.0201005?? ?144692?? ?2.411533333
0.999994?? ?6.00E-06?? ?308451.3015?? ?0?? ?6.00E-06?? ?830.2512563?? ?165220?? ?2.753666667
0.999995?? ?5.00E-06?? ?366383.0905?? ?0?? ?5.00E-06?? ?987.0050251?? ?196414?? ?3.273566667
0.999996?? ?4.00E-06?? ?441795.6482?? ?0?? ?4.00E-06?? ?1193.38191?? ?237499?? ?3.958316667
0.999997?? ?3.00E-06?? ?587062.9196?? ?0?? ?3.00E-06?? ?1594.281407?? ?317262?? ?5.2877
0.999998?? ?2.00E-06?? ?881343.3819?? ?0?? ?2.00E-06?? ?2384.386935?? ?474493?? ?7.908216667
0.999999?? ?1.00E-06?? ?1691667.427?? ?0?? ?1.00E-06?? ?4240.211055?? ?843802?? ?14.06336667
0.9999991?? ?9.00E-07?? ?1861192.327?? ?0?? ?9.00E-07?? ?5102.648241?? ?1015444?? ?16.92406667
0.9999992?? ?8.00E-07?? ?2080246.372?? ?0?? ?8.00E-07?? ?5709.417085?? ?1136174?? ?18.93623333
0.9999993?? ?7.00E-07?? ?2464329.97?? ?0?? ?7.00E-07?? ?6725.005025?? ?1338292?? ?22.30486667
0.9999994?? ?6.00E-07?? ?2925796.92?? ?0?? ?6.00E-07?? ?7890.638191?? ?1570237?? ?26.17061667
0.9999995?? ?5.00E-07?? ?3289760.563?? ?0?? ?5.00E-07?? ?8888.251256?? ?1768762?? ?29.47936667
0.9999996?? ?4.00E-07?? ?4007427.271?? ?0?? ?4.00E-07?? ?10831.90955?? ?2155550?? ?35.92583333
0.9999997?? ?3.00E-07?? ?5245088.296?? ?0?? ?3.00E-07?? ?14310.68342?? ?2847826?? ?47.46376667
0.9999998?? ?2.00E-07?? ?7786895.241?? ?0?? ?2.00E-07?? ?21688.41709?? ?4316003?? ?71.93338333
0.9999999?? ?1.00E-07?? ?1.58E+07?? ?0?? ?1.00E-07?? ?42070.00503?? ?8371946?? ?139.5324333
?? ??? ??? ??? ??? ??? ??? ?
??? ? ?? ? ?? ? ?? ? ?? ? ?? ? ?? ?457.6526833


dr-3-10-3?? ??? ??? ??? ??? ??? ??? ??? ?
?? ??? ??? ??? ??? ??? ??? ??? ?
f2[0]?? ?f2[1]?? ?f2[2]?? ?迭代次數n?? ?平均準確率p-ave?? ?δ?? ?耗時ms/次?? ?耗時ms/199次?? ?耗時 min/199
0.531998108?? ?0.4668063?? ?0.467841829?? ?2.040201005?? ?0?? ?0.5?? ?0.391959799?? ?78?? ?0.0013
0.625916993?? ?0.374693698?? ?0.373937912?? ?5.577889447?? ?0?? ?0.4?? ?0.236180905?? ?78?? ?0.0013
0.717575379?? ?0.283496485?? ?0.282197138?? ?10.4321608?? ?0?? ?0.3?? ?0.155778894?? ?31?? ?0.000516667
0.809919228?? ?0.190881722?? ?0.190713318?? ?18.48241206?? ?0?? ?0.2?? ?0.16080402?? ?47?? ?0.000783333
0.902821459?? ?0.097322419?? ?0.09703025?? ?38.00502513?? ?0?? ?0.1?? ?0.236180905?? ?47?? ?0.000783333
0.990045238?? ?0.009953845?? ?0.009955177?? ?281.0904523?? ?0?? ?0.01?? ?1.567839196?? ?312?? ?0.0052
0.999000849?? ?9.99E-04?? ?9.99E-04?? ?1994.175879?? ?0?? ?0.001?? ?8.261306533?? ?1644?? ?0.0274
0.999900027?? ?1.00E-04?? ?1.00E-04?? ?16359.0402?? ?0?? ?1.00E-04?? ?55.13567839?? ?11020?? ?0.183666667
0.999910024?? ?9.00E-05?? ?9.00E-05?? ?18649.9598?? ?0?? ?9.00E-05?? ?56.92462312?? ?11344?? ?0.189066667
0.999920021?? ?8.00E-05?? ?8.00E-05?? ?20427.95477?? ?0?? ?8.00E-05?? ?60.57286432?? ?12069?? ?0.20115
0.999930016?? ?7.00E-05?? ?7.00E-05?? ?23575.8593?? ?0?? ?7.00E-05?? ?70.74874372?? ?14079?? ?0.23465
0.999940017?? ?6.00E-05?? ?6.00E-05?? ?26453.01508?? ?0?? ?6.00E-05?? ?79.9798995?? ?15931?? ?0.265516667
0.999950013?? ?5.00E-05?? ?5.00E-05?? ?31641.95477?? ?0?? ?5.00E-05?? ?96.27638191?? ?19159?? ?0.319316667
0.999960009?? ?4.00E-05?? ?4.00E-05?? ?38461.94975?? ?0?? ?4.00E-05?? ?116.080402?? ?23100?? ?0.385
0.999970008?? ?3.00E-05?? ?3.00E-05?? ?51233.01508?? ?0?? ?3.00E-05?? ?155.4924623?? ?30943?? ?0.515716667
0.999980005?? ?2.00E-05?? ?2.00E-05?? ?74906.1206?? ?0?? ?2.00E-05?? ?226.8291457?? ?45139?? ?0.752316667
0.999990003?? ?1.00E-05?? ?1.00E-05?? ?144249.7286?? ?0?? ?1.00E-05?? ?437.2713568?? ?87032?? ?1.450533333
0.999991002?? ?9.00E-06?? ?9.00E-06?? ?158850.8543?? ?0?? ?9.00E-06?? ?479.3115578?? ?95383?? ?1.589716667
0.999992002?? ?8.00E-06?? ?8.00E-06?? ?180718.5427?? ?0?? ?8.00E-06?? ?545.5276382?? ?108560?? ?1.809333333
0.999993002?? ?7.00E-06?? ?7.00E-06?? ?202380.0402?? ?0?? ?7.00E-06?? ?622.5527638?? ?123894?? ?2.0649
0.999994001?? ?6.00E-06?? ?6.00E-06?? ?240200?? ?0?? ?6.00E-06?? ?722.5929648?? ?143808?? ?2.3968
0.999995001?? ?5.00E-06?? ?5.00E-06?? ?279138.8844?? ?0?? ?5.00E-06?? ?839.4120603?? ?167050?? ?2.784166667
0.999996001?? ?4.00E-06?? ?4.00E-06?? ?344849.6935?? ?0?? ?4.00E-06?? ?1036.477387?? ?206264?? ?3.437733333
0.999997001?? ?3.00E-06?? ?3.00E-06?? ?459529.0302?? ?0?? ?3.00E-06?? ?1381.035176?? ?274831?? ?4.580516667
0.999998?? ?2.00E-06?? ?2.00E-06?? ?672539.7437?? ?0?? ?2.00E-06?? ?2023.020101?? ?402583?? ?6.709716667
0.999999?? ?1.00E-06?? ?1.00E-06?? ?1292568.874?? ?0?? ?1.00E-06?? ?3888.683417?? ?773855?? ?12.89758333
0.9999991?? ?9.00E-07?? ?9.00E-07?? ?1469246.196?? ?0?? ?9.00E-07?? ?4528.236181?? ?901121?? ?15.01868333
0.9999992?? ?8.00E-07?? ?8.00E-07?? ?1621744.271?? ?0?? ?8.00E-07?? ?5122.98995?? ?1019482?? ?16.99136667
0.9999993?? ?7.00E-07?? ?7.00E-07?? ?1797949.739?? ?0?? ?7.00E-07?? ?5819.79397?? ?1158147?? ?19.30245
0.9999994?? ?6.00E-07?? ?6.00E-07?? ?2091886.859?? ?0?? ?6.00E-07?? ?6800.984925?? ?1353401?? ?22.55668333
0.9999995?? ?5.00E-07?? ?5.00E-07?? ?2467525.844?? ?0?? ?5.00E-07?? ?8110.522613?? ?1613995?? ?26.89991667
0.9999996?? ?4.00E-07?? ?4.00E-07?? ?3216941.045?? ?0?? ?4.00E-07?? ?9953.045226?? ?1980658?? ?33.01096667
0.9999997?? ?3.00E-07?? ?3.00E-07?? ?4254122.518?? ?0?? ?3.00E-07?? ?12569.71859?? ?2501374?? ?41.68956667
0.9999998?? ?2.00E-07?? ?2.00E-07?? ?5986582.417?? ?0?? ?2.00E-07?? ?18259.92462?? ?3633725?? ?60.56208333
0.9999999?? ?1.00E-07?? ?1.00E-07?? ?1.23E+07?? ?0?? ?1.00E-07?? ?38868.19095?? ?7734773?? ?128.9128833
?? ??? ??? ??? ??? ??? ??? ??? ?
?? ??? ??? ??? ??? ??? ??? ??? ?407.7492833

dr-4-10-4?? ??? ??? ??? ??? ??? ??? ??? ??? ?
?? ??? ??? ??? ??? ??? ??? ??? ??? ?
f2[0]?? ?f2[1]?? ?f2[2]?? ?f2[3]?? ?迭代次數n?? ?平均準確率p-ave?? ?δ?? ?耗時ms/次?? ?耗時ms/199次?? ?耗時 min/199
0.535716861?? ?0.463529881?? ?0.462201609?? ?0.464102577?? ?3?? ?0?? ?0.5?? ?0.547738693?? ?109?? ?0.001816667
0.626382757?? ?0.370585994?? ?0.369941534?? ?0.372025326?? ?7?? ?0?? ?0.4?? ?0.221105528?? ?51?? ?0.00085
0.718509103?? ?0.281085664?? ?0.281285396?? ?0.281171568?? ?12?? ?0?? ?0.3?? ?0.135678392?? ?27?? ?0.00045
0.810595708?? ?0.189874827?? ?0.189742401?? ?0.188944534?? ?20?? ?0?? ?0.2?? ?0.180904523?? ?40?? ?0.000666667
0.903273004?? ?0.096510407?? ?0.096590552?? ?0.096482455?? ?42?? ?0?? ?0.1?? ?0.311557789?? ?62?? ?0.001033333
0.99006448?? ?0.009931742?? ?0.009934172?? ?0.009929011?? ?347?? ?0?? ?0.01?? ?1.768844221?? ?352?? ?0.005866667
0.999001338?? ?9.99E-04?? ?9.99E-04?? ?9.99E-04?? ?2942?? ?0?? ?0.001?? ?8.376884422?? ?1668?? ?0.0278
0.99990005?? ?1.00E-04?? ?9.99E-05?? ?9.99E-05?? ?23884?? ?0?? ?1.00E-04?? ?51.49748744?? ?10254?? ?0.1709
0.999910042?? ?9.00E-05?? ?9.00E-05?? ?9.00E-05?? ?37315?? ?0?? ?9.00E-05?? ?54.46231156?? ?10858?? ?0.180966667
0.999920041?? ?8.00E-05?? ?8.00E-05?? ?8.00E-05?? ?26333?? ?0?? ?8.00E-05?? ?60.04020101?? ?11964?? ?0.1994
0.99993003?? ?7.00E-05?? ?7.00E-05?? ?7.00E-05?? ?46405?? ?0?? ?7.00E-05?? ?67.23115578?? ?13387?? ?0.223116667
0.999940028?? ?6.00E-05?? ?6.00E-05?? ?6.00E-05?? ?43844?? ?0?? ?6.00E-05?? ?80.77386935?? ?16075?? ?0.267916667
0.999950023?? ?5.00E-05?? ?5.00E-05?? ?5.00E-05?? ?57098?? ?0?? ?5.00E-05?? ?94.61809045?? ?18837?? ?0.31395
0.999960017?? ?4.00E-05?? ?4.00E-05?? ?4.00E-05?? ?63706?? ?0?? ?4.00E-05?? ?117.3819095?? ?23359?? ?0.389316667
0.999970013?? ?3.00E-05?? ?3.00E-05?? ?3.00E-05?? ?102785?? ?0?? ?3.00E-05?? ?152.3819095?? ?30332?? ?0.505533333
0.999980009?? ?2.00E-05?? ?2.00E-05?? ?2.00E-05?? ?131495?? ?0?? ?2.00E-05?? ?223.3517588?? ?44456?? ?0.740933333
0.999990004?? ?1.00E-05?? ?1.00E-05?? ?1.00E-05?? ?203355?? ?0?? ?1.00E-05?? ?432.8542714?? ?86146?? ?1.435766667
0.999991003?? ?9.00E-06?? ?9.00E-06?? ?9.00E-06?? ?296829?? ?0?? ?9.00E-06?? ?485.1005025?? ?96535?? ?1.608916667
0.999992003?? ?8.00E-06?? ?8.00E-06?? ?8.00E-06?? ?363607?? ?0?? ?8.00E-06?? ?553.4522613?? ?110137?? ?1.835616667
0.999993002?? ?7.00E-06?? ?7.00E-06?? ?7.00E-06?? ?421455?? ?0?? ?7.00E-06?? ?624.6884422?? ?124313?? ?2.071883333
0.999994002?? ?6.00E-06?? ?6.00E-06?? ?6.00E-06?? ?405253?? ?0?? ?6.00E-06?? ?720.0854271?? ?143305?? ?2.388416667
0.999995002?? ?5.00E-06?? ?5.00E-06?? ?5.00E-06?? ?438198?? ?0?? ?5.00E-06?? ?846.7085427?? ?168511?? ?2.808516667
0.999996001?? ?4.00E-06?? ?4.00E-06?? ?4.00E-06?? ?733902?? ?0?? ?4.00E-06?? ?1062.241206?? ?211386?? ?3.5231
0.999997001?? ?3.00E-06?? ?3.00E-06?? ?3.00E-06?? ?747879?? ?0?? ?3.00E-06?? ?1375.070352?? ?273639?? ?4.56065
0.999998001?? ?2.00E-06?? ?2.00E-06?? ?2.00E-06?? ?1245116?? ?0?? ?2.00E-06?? ?2037.321608?? ?405442?? ?6.757366667
0.999999?? ?1.00E-06?? ?1.00E-06?? ?1.00E-06?? ?2046819?? ?0?? ?1.00E-06?? ?3900.668342?? ?776234?? ?12.93723333
0.9999991?? ?9.00E-07?? ?9.00E-07?? ?9.00E-07?? ?2010564?? ?0?? ?9.00E-07?? ?4260.743719?? ?847889?? ?14.13148333
0.9999992?? ?8.00E-07?? ?8.00E-07?? ?8.00E-07?? ?2166817?? ?0?? ?8.00E-07?? ?4823.21608?? ?959820?? ?15.997
0.9999993?? ?7.00E-07?? ?7.00E-07?? ?7.00E-07?? ?3092601?? ?0?? ?7.00E-07?? ?5536.517588?? ?1101799?? ?18.36331667
0.9999994?? ?6.00E-07?? ?6.00E-07?? ?6.00E-07?? ?2729326?? ?0?? ?6.00E-07?? ?6414.592965?? ?1276520?? ?21.27533333
0.9999995?? ?5.00E-07?? ?5.00E-07?? ?5.00E-07?? ?3698517?? ?0?? ?5.00E-07?? ?7769.160804?? ?1546067?? ?25.76778333
0.9999996?? ?4.00E-07?? ?4.00E-07?? ?4.00E-07?? ?5727957?? ?0?? ?4.00E-07?? ?9313.638191?? ?1853418?? ?30.8903
0.9999997?? ?3.00E-07?? ?3.00E-07?? ?3.00E-07?? ?6026219?? ?0?? ?3.00E-07?? ?12582.55276?? ?2503943?? ?41.73238333
0.9999998?? ?2.00E-07?? ?2.00E-07?? ?2.00E-07?? ?1.07E+07?? ?0?? ?2.00E-07?? ?18166.89447?? ?3615217?? ?60.25361667
0.9999999?? ?1.00E-07?? ?1.00E-07?? ?1.00E-07?? ?2.71E+07?? ?0?? ?1.00E-07?? ?36836.72864?? ?7330514?? ?122.1752333
?? ??? ??? ??? ??? ??? ??? ??? ??? ?
?? ??? ??? ??? ??? ??? ??? ??? ??? ?393.5444333

本次實驗原始數據比較多有感興趣的朋友可以在我的資源里下載

?

總結

以上是生活随笔為你收集整理的输入对5层网络迭代次数的影响的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。

主站蜘蛛池模板: 精品国产乱码久久久久久闺蜜 | 亚洲性事 | 毛片视频免费播放 | 麻豆免费在线 | 午夜激情在线 | 四虎成人影视 | 超碰资源 | 精产国产伦理一二三区 | caoporen在线 | 91豆花视频 | 亚洲第一成年网 | 国产精品一区二区三区不卡 | 亚洲激情视频在线 | 激烈的性高湖波多野结衣 | 亚洲成人自拍 | 18+视频在线观看 | 亚洲国产精品99久久久久久久久 | 呦呦视频在线观看 | 蜜臀av在线免费观看 | 色哟哟黄色| 国产激情免费 | 午夜极品 | 美女网站免费黄 | 精品91在线 | 中文在线最新版天堂8 | 婷婷天天| 色香欲综合网 | 亚洲在线视频网站 | www.婷婷| 日本在线观看www | 日韩毛片一区二区三区 | 免费视频爱爱太爽 | 丨国产丨调教丨91丨 | 日韩黄色免费网站 | jizzjizzjizz国产| 无码人妻aⅴ一区二区三区玉蒲团 | 婷婷成人综合 | 五月天开心激情 | 欧美精品一区二区在线观看 | 能在线看的av | 日韩av电影网站 | 日本黄色录像片 | 成人音影 | a级黄色片 | 性色视频在线观看 | 91久久久久久久 | 可以直接看的毛片 | 激情视频一区二区 | 国产一区二区三区影视 | 青春草国产视频 | 久草视频在线资源 | 在线成人 | 国产精品免费在线播放 | 亚洲女女做受ⅹxx高潮 | 91精品国产91久久久久久久久久久久 | 天天干天天操天天干 | 99精品视频免费版的特色功能 | www.色多多 | 中国老头同性xxxxx | 色偷偷网站 | 色av色| 黄色在线观看www | 97神马影院 | 日本在线观看a | 国产网站在线 | 欧美不卡在线观看 | 狠狠摸狠狠操 | 亚洲情涩 | 亚洲国产小视频 | 天堂网wwww| 人人精品视频 | a级淫片| 亚洲精品乱码久久久久久日本蜜臀 | 天天做天天爱天天操 | 精品成人av一区二区在线播放 | 91www在线观看| ass极品国模人体欣赏 | 岛国一区二区三区 | 亚洲视频在线一区 | 稀缺小u女呦精品呦 | 欧美在线专区 | 欧美一区二区三区四区在线 | 日韩精品一区二区三区网站 | 亚洲一久久 | 国产欧美精品一区二区在线播放 | 日韩精品在线观看AV | 欧洲美女与动交ccoo | 国产视频一区二区三区四区五区 | 爱情岛亚洲首页论坛 | 国产精品二区一区二区aⅴ污介绍 | 成人免费视频软件网站 | 男人深夜影院 | 亚洲一级片免费看 | 美女扒开腿让男人 | 国产成人区 | 日本黄网站在线观看 | 日批在线观看 | 亚洲精品观看 | 宝贝乖h调教灌尿穿环 |