日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

UA MATH567 高维统计专题2 Low-rank矩阵及其估计3 Rank RIP

發布時間:2025/4/14 编程问答 25 豆豆
生活随笔 收集整理的這篇文章主要介紹了 UA MATH567 高维统计专题2 Low-rank矩阵及其估计3 Rank RIP 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

UA MATH567 高維統計專題2 Low-rank矩陣及其估計3 Rank RIP

Low-rank matrix completion的模型是rank minimization,上一講我們介紹了rank minimization與nuclear norm minimization的等價性,這一講我們介紹用nuclear norm minimization
min?Θ∥Θ∥?s.t.y=X(Θ),X:Rd1×d2→Rn\min_{\Theta} \ \ \left\| \Theta \right\|_*\\ s.t. \ \ y=\mathcal{X}(\Theta),\mathcal{X}:\mathbb{R}^{d_1 \times d_2 } \to \mathbb{R}^nΘmin???Θ??s.t.??y=X(Θ),X:Rd1?×d2?Rn

成功估計low-rank matrix的條件。


在sparse signal recovery中,我們討論L1 minimization的full recovery時引入了restricted isometry property(RIP),它可以推廣到matrix completion中,作為nuclear norm minimization的條件:

Rank-restricted RIP
X\mathcal{X}X具有rank RIP of rank rrr with constant δ\deltaδ,如果?Θ\forall \Theta?Θ, rank(Θ)≤rrank(\Theta)\le rrank(Θ)r,
(1?δ)∥Θ∥F2≤∥X(Θ)∥22≤(1+δ)∥Θ∥F2(1-\delta)\left\|\Theta \right\|_F^2 \le \left\|\mathcal{X}(\Theta) \right\|_2^2 \le (1+\delta)\left\|\Theta \right\|_F^2(1?δ)ΘF2?X(Θ)22?(1+δ)ΘF2?

δr(X)\delta_r(\mathcal{X})δr?(X)是讓這個不等式成立的最小可能的δ\deltaδ

定理1 如果y=X(Θ?)y=\mathcal{X}(\Theta^*)y=X(Θ?)r=rank(Θ?)r=rank(\Theta^*)r=rank(Θ?),并且δ2r(X)<1\delta_{2r}(\mathcal{X}) < 1δ2r?(X)<1,則Θ?\Theta^*Θ?是rank minimization
min?Θrank(Θ)s.t.y=X(Θ),X:Rd1×d2→Rn\min_{\Theta} \ \ rank(\Theta) \\ s.t. \ \ y=\mathcal{X}(\Theta),\mathcal{X}:\mathbb{R}^{d_1 \times d_2 } \to \mathbb{R}^nΘmin???rank(Θ)s.t.??y=X(Θ),X:Rd1?×d2?Rn

的唯一解。

定理2 如果y=X(Θ?)y=\mathcal{X}(\Theta^*)y=X(Θ?)r=rank(Θ?)r=rank(\Theta^*)r=rank(Θ?),并且δ4r(X)≤2?1\delta_{4r}(\mathcal{X}) \le \sqrt{2}-1δ4r?(X)2??1,則Θ?\Theta^*Θ?是nuclear norm minimization
min?Θ∥Θ∥?s.t.y=X(Θ),X:Rd1×d2→Rn\min_{\Theta} \ \ \left\| \Theta\right\|_* \\ s.t. \ \ y=\mathcal{X}(\Theta),\mathcal{X}:\mathbb{R}^{d_1 \times d_2 } \to \mathbb{R}^nΘmin???Θ??s.t.??y=X(Θ),X:Rd1?×d2?Rn

的唯一解。

定理3 假設X:Rd1×d2→Rn\mathcal{X}:\mathbb{R}^{d_1 \times d_2 } \to \mathbb{R}^nX:Rd1?×d2?Rn是一個隨機張量,它的分量獨立同分布于N(0,1/n)N(0,1/n)N(0,1/n),如果
n≥cr(d1+d2)log?1δδ2n \ge c r(d_1+d_2)\frac{\log \frac{1}{\delta}}{\delta^2}ncr(d1?+d2?)δ2logδ1??

ccc是一個常數)則X\mathcal{X}X滿足δr(X)≤δ\delta_r(\mathcal{X}) \le \deltaδr?(X)δ的rank RIP with high probability.

評注 這三個定理完整證明過程可以閱讀Wright and Ma 2020年那本高維數據分析的section 4.3.4-4.3.5;對于noisy data generation process y=X(Θ)+wy = \mathcal{X}(\Theta)+wy=X(Θ)+w

其中www是noise,我們可以仿照LASSO寫出penalized least square形式的模型:
min?12∥y?X(Θ)∥22+λ∥Θ∥?\min \ \ \frac{1}{2} \left\| y - \mathcal{X}(\Theta) \right\|_2^2+\lambda \left\| \Theta\right\|_*min??21?y?X(Θ)22?+λΘ??


總結

以上是生活随笔為你收集整理的UA MATH567 高维统计专题2 Low-rank矩阵及其估计3 Rank RIP的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。