日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

ML---Simple Linear Regression

發布時間:2025/4/16 编程问答 35 豆豆
生活随笔 收集整理的這篇文章主要介紹了 ML---Simple Linear Regression 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

機器學習100天系列學習筆記 機器學習100天(中文翻譯版)機器學習100天(英文原版)

第一步:導包

#Step 1: Data Preprocessing import pandas as pd import numpy as np import matplotlib.pyplot as plt

第二步:導入數據

# 28個樣本 dataset = pd.read_csv('D:/daily/機器學習100天/100-Days-Of-ML-Code-中文版本/100-Days-Of-ML-Code-master/datasets/studentscores.csv') X = dataset.iloc[ : , :-1].values Y = dataset.iloc[ : , 1 ].values

第三步:劃分訓練集、測試集

#Step 3: Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split X_train, X_test, Y_train, Y_test = train_test_split( X, Y, test_size = 1/4, random_state = 0)

第四步:簡單線性回歸擬合

#Step 4: Fitting Simple Linear Regression Model to the training set from sklearn.linear_model import LinearRegression regressor = LinearRegression() regressor = regressor.fit(X_train, Y_train)

第五步:預測

#Step 5: Predecting the Result Y_pred = regressor.predict(X_test)

第六步:訓練集可視化

#Step 6: Visualising the Training results plt.scatter(X_train , Y_train, color = 'red') plt.plot(X_train , regressor.predict(X_train), color ='blue') plt.show()

第七步:測試集可視化

#Step 7: Visualizing the test results plt.scatter(X_test , Y_test, color = 'red') plt.plot(X_test , regressor.predict(X_test), color ='blue') plt.show()

第八步:回歸性能指標

#Step 8: regression evaluation from sklearn.metrics import r2_score y_pred = regressor.predict(X_test) print(r2_score(Y_test, y_pred))

打印:0.30574547147699993

R2 決定系數(擬合優度),模型越好:r2→1;模型越差:r2→0

完整代碼:

#Day 2: Simple Linear Regression 2022/4/5 #Step 1: Data Preprocessing import pandas as pd import numpy as np import matplotlib.pyplot as plt#Step 2: Importing dataset #28個樣本 dataset = pd.read_csv('D:/daily/機器學習100天/100-Days-Of-ML-Code-中文版本/100-Days-Of-ML-Code-master/datasets/studentscores.csv') X = dataset.iloc[ : , :-1].values Y = dataset.iloc[ : , 1 ].values#Step 3: Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split X_train, X_test, Y_train, Y_test = train_test_split( X, Y, test_size = 1/4, random_state = 0)#Step 4: Fitting Simple Linear Regression Model to the training set from sklearn.linear_model import LinearRegression regressor = LinearRegression() regressor = regressor.fit(X_train, Y_train)#Step 5: Predecting the Result Y_pred = regressor.predict(X_test)#Step 6: Visualising the Training results plt.scatter(X_train , Y_train, color = 'red') plt.plot(X_train , regressor.predict(X_train), color ='blue') plt.show()#Step 7: Visualizing the test results plt.scatter(X_test , Y_test, color = 'red') plt.plot(X_test , regressor.predict(X_test), color ='blue') plt.show()#Step 8: regression evaluation from sklearn.metrics import r2_score y_pred = regressor.predict(X_test) print(r2_score(Y_test, y_pred))

總結

以上是生活随笔為你收集整理的ML---Simple Linear Regression的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。