日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

opencv中使用K-近邻分类算法KNN

發布時間:2025/4/16 编程问答 18 豆豆
生活随笔 收集整理的這篇文章主要介紹了 opencv中使用K-近邻分类算法KNN 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

K-近鄰(K-Nearest Neighbors, KNN)是一種很好理解的分類算法,簡單說來就是從訓練樣本中找出K個與其最相近的樣本,然后看這K個樣本中哪個類別的樣本多,則待判定的值(或說抽樣)就屬于這個類別。

KNN算法的步驟

  • 計算已知類別數據集中每個點與當前點的距離;
  • 選取與當前點距離最小的K個點;
  • 統計前K個點中每個類別的樣本出現的頻率;
  • 返回前K個點出現頻率最高的類別作為當前點的預測分類。

OpenCV中使用CvKNearest

OpenCV中實現CvKNearest類可以實現簡單的KNN訓練和預測。 [cpp]?view plaincopy
  • int?main()??
  • {??
  • ????float?labels[10]?=?{0,0,0,0,0,1,1,1,1,1};??
  • ????Mat?labelsMat(10,?1,?CV_32FC1,?labels);??
  • ????cout<<labelsMat<<endl;??
  • ????float?trainingData[10][2];??
  • ????srand(time(0));???
  • ????for(int?i=0;i<5;i++){??
  • ????????trainingData[i][0]?=?rand()%255+1;??
  • ????????trainingData[i][1]?=?rand()%255+1;??
  • ????????trainingData[i+5][0]?=?rand()%255+255;??
  • ????????trainingData[i+5][1]?=?rand()%255+255;??
  • ????}??
  • ????Mat?trainingDataMat(10,?2,?CV_32FC1,?trainingData);??
  • ????cout<<trainingDataMat<<endl;??
  • ????CvKNearest?knn;??
  • ????knn.train(trainingDataMat,labelsMat,Mat(),?false,?2?);??
  • ????//?Data?for?visual?representation??
  • ????int?width?=?512,?height?=?512;??
  • ????Mat?image?=?Mat::zeros(height,?width,?CV_8UC3);??
  • ????Vec3b?green(0,255,0),?blue?(255,0,0);??
  • ??
  • ????for?(int?i?=?0;?i?<?image.rows;?++i){??
  • ????????for?(int?j?=?0;?j?<?image.cols;?++j){??
  • ????????????const?Mat?sampleMat?=?(Mat_<float>(1,2)?<<?i,j);??
  • ????????????Mat?response;??
  • ????????????float?result?=?knn.find_nearest(sampleMat,1);??
  • ????????????if?(result?!=0){??
  • ????????????????image.at<Vec3b>(j,?i)??=?green;??
  • ????????????}??
  • ????????????else????
  • ????????????????image.at<Vec3b>(j,?i)??=?blue;??
  • ????????}??
  • ????}??
  • ??
  • ????????//?Show?the?training?data??
  • ????????for(int?i=0;i<5;i++){??
  • ????????????circle(?image,?Point(trainingData[i][0],??trainingData[i][1]),???
  • ????????????????5,?Scalar(??0,???0,???0),?-1,?8);??
  • ????????????circle(?image,?Point(trainingData[i+5][0],??trainingData[i+5][1]),???
  • ????????????????5,?Scalar(255,?255,?255),?-1,?8);??
  • ????????}??
  • ????????imshow("KNN?Simple?Example",?image);?//?show?it?to?the?user??
  • ????????waitKey(10000);??
  • ??
  • }??

  • 使用的是之前BP神經網絡中的例子,分類結果如下:
    預測函數find_nearest()除了輸入sample參數外還有些其他的參數: [cpp]?view plaincopy
  • float?CvKNearest::find_nearest(const?Mat&?samples,?int?k,?Mat*?results=0,???
  • const?float**?neighbors=0,?Mat*?neighborResponses=0,?Mat*?dist=0?)??


  • 即,samples為樣本數*特征數的浮點矩陣;K為尋找最近點的個數;results與預測結果;neibhbors為k*樣本數的指針數組(輸入為const,實在不知為何如此設計);neighborResponse為樣本數*k的每個樣本K個近鄰的輸出值;dist為樣本數*k的每個樣本K個近鄰的距離。

    另一個例子

    OpenCV refman也提供了一個類似的示例,使用CvMat格式的輸入參數: [cpp]?view plaincopy
  • int?main(?int?argc,?char**?argv?)??
  • {??
  • ????const?int?K?=?10;??
  • ????int?i,?j,?k,?accuracy;??
  • ????float?response;??
  • ????int?train_sample_count?=?100;??
  • ????CvRNG?rng_state?=?cvRNG(-1);??
  • ????CvMat*?trainData?=?cvCreateMat(?train_sample_count,?2,?CV_32FC1?);??
  • ????CvMat*?trainClasses?=?cvCreateMat(?train_sample_count,?1,?CV_32FC1?);??
  • ????IplImage*?img?=?cvCreateImage(?cvSize(?500,?500?),?8,?3?);??
  • ????float?_sample[2];??
  • ????CvMat?sample?=?cvMat(?1,?2,?CV_32FC1,?_sample?);??
  • ????cvZero(?img?);??
  • ????CvMat?trainData1,?trainData2,?trainClasses1,?trainClasses2;??
  • ????//?form?the?training?samples??
  • ????cvGetRows(?trainData,?&trainData1,?0,?train_sample_count/2?);??
  • ????cvRandArr(?&rng_state,?&trainData1,?CV_RAND_NORMAL,?cvScalar(200,200),?cvScalar(50,50)?);??
  • ????cvGetRows(?trainData,?&trainData2,?train_sample_count/2,?train_sample_count?);??
  • ????cvRandArr(?&rng_state,?&trainData2,?CV_RAND_NORMAL,?cvScalar(300,300),?cvScalar(50,50)?);??
  • ????cvGetRows(?trainClasses,?&trainClasses1,?0,?train_sample_count/2?);??
  • ????cvSet(?&trainClasses1,?cvScalar(1)?);??
  • ????cvGetRows(?trainClasses,?&trainClasses2,?train_sample_count/2,?train_sample_count?);??
  • ????cvSet(?&trainClasses2,?cvScalar(2)?);??
  • ????//?learn?classifier??
  • ????CvKNearest?knn(?trainData,?trainClasses,?0,?false,?K?);??
  • ????CvMat*?nearests?=?cvCreateMat(?1,?K,?CV_32FC1);??
  • ????for(?i?=?0;?i?<?img->height;?i++?)??
  • ????{??
  • ????????for(?j?=?0;?j?<?img->width;?j++?)??
  • ????????{??
  • ????????????sample.data.fl[0]?=?(float)j;??
  • ????????????sample.data.fl[1]?=?(float)i;??
  • ????????????//?estimate?the?response?and?get?the?neighbors’?labels??
  • ????????????response?=?knn.find_nearest(&sample,K,0,0,nearests,0);??
  • ????????????//?compute?the?number?of?neighbors?representing?the?majority??
  • ????????????for(?k?=?0,?accuracy?=?0;?k?<?K;?k++?)??
  • ????????????{??
  • ????????????????if(?nearests->data.fl[k]?==?response)??
  • ????????????????????accuracy++;??
  • ????????????}??
  • ????????????//?highlight?the?pixel?depending?on?the?accuracy?(or?confidence)??
  • ????????????cvSet2D(?img,?i,?j,?response?==?1????
  • ????????????????(accuracy?>?5???CV_RGB(180,0,0)?:?CV_RGB(180,120,0))?:??
  • ????????????????(accuracy?>?5???CV_RGB(0,180,0)?:?CV_RGB(120,120,0))?);??
  • ????????}??
  • ????}??
  • ????//?display?the?original?training?samples??
  • ????for(?i?=?0;?i?<?train_sample_count/2;?i++?)??
  • ????{??
  • ????????CvPoint?pt;??
  • ????????pt.x?=?cvRound(trainData1.data.fl[i*2]);??
  • ????????pt.y?=?cvRound(trainData1.data.fl[i*2+1]);??
  • ????????cvCircle(?img,?pt,?2,?CV_RGB(255,0,0),?CV_FILLED?);??
  • ????????pt.x?=?cvRound(trainData2.data.fl[i*2]);??
  • ????????pt.y?=?cvRound(trainData2.data.fl[i*2+1]);??
  • ????????cvCircle(?img,?pt,?2,?CV_RGB(0,255,0),?CV_FILLED?);??
  • ????}??
  • ????cvNamedWindow(?"classifier?result",?1?);??
  • ????cvShowImage(?"classifier?result",?img?);??
  • ????cvWaitKey(0);??
  • ????cvReleaseMat(?&trainClasses?);??
  • ????cvReleaseMat(?&trainData?);??
  • ????return?0;??
  • }??
  • 分類結果:

    KNN的思想很好理解,也非常容易實現,同時分類結果較高,對異常值不敏感。但計算復雜度較高,不適于大數據的分類問題。

    總結

    以上是生活随笔為你收集整理的opencv中使用K-近邻分类算法KNN的全部內容,希望文章能夠幫你解決所遇到的問題。

    如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。