日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當(dāng)前位置: 首頁 > 编程语言 > java >内容正文

java

机器学习知识点(十八)密度聚类DBSCAN算法Java实现

發(fā)布時(shí)間:2025/4/16 java 30 豆豆
生活随笔 收集整理的這篇文章主要介紹了 机器学习知识点(十八)密度聚类DBSCAN算法Java实现 小編覺得挺不錯(cuò)的,現(xiàn)在分享給大家,幫大家做個(gè)參考.

為更好理解聚類算法,從網(wǎng)上找現(xiàn)成代碼來理解,發(fā)現(xiàn)了一個(gè)Java自身的ML庫,鏈接:http://java-ml.sourceforge.net/

有興趣可以下載來看看源碼,理解基礎(chǔ)ML算法。對(duì)于DBSCAN算法,從網(wǎng)上找到一個(gè)Java實(shí)現(xiàn)的,主要是用來理解其算法過程。參考代碼如下:

1、Point類,數(shù)據(jù)對(duì)象

package sk.cluster;public class Point {private double x;//坐標(biāo)x軸private double y;//坐標(biāo)y軸private boolean isVisit;//是佛訪問標(biāo)記private int cluster;//所屬簇類private boolean isNoised;//是否是噪音數(shù)據(jù)public Point(double x,double y) {this.x = x;this.y = y;this.isVisit = false;this.cluster = 0;this.isNoised = false;}public double getDistance(Point point) {//計(jì)算兩點(diǎn)間距離return Math.sqrt((x-point.x)*(x-point.x)+(y-point.y)*(y-point.y));}public void setX(double x) {this.x = x;}public double getX() {return x;}public void setY(double y) {this.y = y;}public double getY() {return y;}public void setVisit(boolean isVisit) {this.isVisit = isVisit;}public boolean getVisit() {return isVisit;}public int getCluster() {return cluster;}public void setNoised(boolean isNoised) {this.isNoised = isNoised;}public void setCluster(int cluster) {this.cluster = cluster;}public boolean getNoised() {return this.isNoised;}@Overridepublic String toString() {return x+" "+y+" "+cluster+" "+(isNoised?1:0);}}
2、Data類,數(shù)據(jù)集

package sk.cluster;import java.io.*; import java.text.DecimalFormat; import java.text.NumberFormat; import java.util.ArrayList; import java.util.Random;public class Data {private static DecimalFormat df=(DecimalFormat) NumberFormat.getInstance();//隨機(jī)生成數(shù)據(jù)public static ArrayList<Point> generateSinData(int size) {ArrayList<Point> points = new ArrayList<Point>(size);Random rd = new Random(size);for (int i=0;i<size/2;i++) {double x = format(Math.PI / (size / 2) * (i + 1));double y = format(Math.sin(x)) ;points.add(new Point(x,y));}for (int i=0;i<size/2;i++) {double x = format(1.5 + Math.PI / (size/2) * (i+1));double y = format(Math.cos(x));points.add(new Point(x,y));}return points;}//輸入指定數(shù)據(jù)public static ArrayList<Point> generateSpecialData() {ArrayList<Point> points = new ArrayList<Point>();points.add(new Point(2,2));points.add(new Point(3,1));points.add(new Point(3,4));points.add(new Point(3,14));points.add(new Point(5,3));points.add(new Point(8,3));points.add(new Point(8,6));points.add(new Point(9,8));points.add(new Point(10,4));points.add(new Point(10,7));points.add(new Point(10,10));points.add(new Point(10,14));points.add(new Point(11,13));points.add(new Point(12,7));points.add(new Point(12,15));points.add(new Point(14,7));points.add(new Point(14,9));points.add(new Point(14,15));points.add(new Point(15,8));return points;}//獲取文件數(shù)據(jù)public static ArrayList<Point> getData(String sourcePath) {ArrayList<Point> points = new ArrayList<Point>();File fileIn = new File(sourcePath);try {BufferedReader br = new BufferedReader(new FileReader(fileIn));String line = null;line = br.readLine();while (line != null) {Double x = Double.parseDouble(line.split(",")[3]);Double y = Double.parseDouble(line.split(",")[4]);points.add(new Point(x, y));line = br.readLine();}br.close();} catch (IOException e) {e.printStackTrace();}return points;}//輸出到文件public static void writeData(ArrayList<Point> points,String path) {try {BufferedWriter bw = new BufferedWriter(new FileWriter(path));for (Point point:points) {bw.write(point.toString()+"\n");}bw.close();} catch (IOException e) {e.printStackTrace();}}private static double format(double x) {return Double.valueOf(df.format(x));}}
3、DBSCAN類,實(shí)現(xiàn)DBSCAN算法

package sk.cluster;import java.util.ArrayList;public class DBScan {private double radius;private int minPts;public DBScan(double radius,int minPts) {this.radius = radius;//領(lǐng)域半徑參數(shù)this.minPts = minPts;//領(lǐng)域密度值,該領(lǐng)域內(nèi)有多少個(gè)樣本}public void process(ArrayList<Point> points) {int size = points.size();int idx = 0;int cluster = 1;while (idx<size) {//樣本總數(shù)Point p = points.get(idx++);//choose an unvisited pointif (!p.getVisit()) {p.setVisit(true);//set visitedArrayList<Point> adjacentPoints = getAdjacentPoints(p, points);//計(jì)算兩點(diǎn)距離,看是否在領(lǐng)域內(nèi)//set the point which adjacent points less than minPts noisedif (adjacentPoints != null && adjacentPoints.size() < minPts) {p.setNoised(true);//噪音數(shù)據(jù)} else {//建立該點(diǎn)作為領(lǐng)域核心對(duì)象p.setCluster(cluster);for (int i = 0; i < adjacentPoints.size(); i++) {Point adjacentPoint = adjacentPoints.get(i);//領(lǐng)域內(nèi)的樣本//only check unvisited point, cause only unvisited have the chance to add new adjacent pointsif (!adjacentPoint.getVisit()) {adjacentPoint.setVisit(true);ArrayList<Point> adjacentAdjacentPoints = getAdjacentPoints(adjacentPoint, points);//add point which adjacent points not less than minPts noisedif (adjacentAdjacentPoints != null && adjacentAdjacentPoints.size() >= minPts) {//adjacentPoints.addAll(adjacentAdjacentPoints);for (Point pp : adjacentAdjacentPoints){if (!adjacentPoints.contains(pp)){adjacentPoints.add(pp);}}}}//add point which doest not belong to any clusterif (adjacentPoint.getCluster() == 0) {adjacentPoint.setCluster(cluster);//set point which marked noised before non-noisedif (adjacentPoint.getNoised()) {adjacentPoint.setNoised(false);}}}cluster++;}}if (idx%1000==0) {System.out.println(idx);}}}private ArrayList<Point> getAdjacentPoints(Point centerPoint,ArrayList<Point> points) {ArrayList<Point> adjacentPoints = new ArrayList<Point>();for (Point p:points) {//include centerPoint itselfdouble distance = centerPoint.getDistance(p);if (distance<=radius) {adjacentPoints.add(p);}}return adjacentPoints;}} /* ##DBScan算法流程圖算法:DBScan,基于密度的聚類算法 輸入:D:一個(gè)包含n個(gè)數(shù)據(jù)的數(shù)據(jù)集r:半徑參數(shù)minPts:領(lǐng)域密度閾值 輸出:基于密度的聚類集合 標(biāo)記D中所有的點(diǎn)為unvisted for each p in Dif p.visit = unvisted找出與點(diǎn)p距離不大于r的所有點(diǎn)集合NIf N.size() < minPts標(biāo)記點(diǎn)p為噪聲點(diǎn)Elsefor each p' in NIf p'.visit == unvisted找出與點(diǎn)p距離不大于r的所有點(diǎn)集合N'If N'.size()>=minPts將集合N'加入集合N中去End ifElseIf p'未被聚到某個(gè)簇將p'聚到當(dāng)前簇If p'被標(biāo)記為噪聲點(diǎn)將p'取消標(biāo)記為噪聲點(diǎn)End IfEnd IfEnd IfEnd forEnd ifEnd if End for */
4、client測試類

package sk.cluster;import java.util.ArrayList;public class Client {public static void main(String[] args) {ArrayList<Point> points = Data.generateSinData(200);//隨機(jī)生成200個(gè)pointDBScan dbScan = new DBScan(0.6,4);//r:領(lǐng)域半徑參數(shù) ,minPts領(lǐng)域密度閾值,密度值//ArrayList<Point> points = Data.generateSpecialData();//ArrayList<Point> points = Data.getData("D:\\tmp\\testData.txt");//DBScan dbScan = new DBScan(0.1,1000);dbScan.process(points);for (Point p:points) {System.out.println(p);}Data.writeData(points,"D:\\tmp\\data.txt");}}

總結(jié)

以上是生活随笔為你收集整理的机器学习知识点(十八)密度聚类DBSCAN算法Java实现的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網(wǎng)站內(nèi)容還不錯(cuò),歡迎將生活随笔推薦給好友。

主站蜘蛛池模板: 羞羞漫画在线播放 | 舐め犯し波多野结衣在线观看 | wwwwxxxx欧美| 色综合社区 | 影音先锋在线播放 | 天天干,天天干 | 手机av在线免费观看 | 免费久久一级欧美特大黄 | 性欧美lx╳lx╳ | 我们的生活第五季在线观看免费 | 波多野结衣视频观看 | 日韩免费影院 | 九九热在线免费视频 | 成人看片网 | 欧美日韩一二三区 | 日韩手机在线视频 | 国产精品一区二区黑人巨大 | 蜜臀av性久久久久蜜臀aⅴ | 色综合中文字幕 | 国语对白做受 | 久久国产精品无码一级毛片 | 成人在线免费播放视频 | 亚洲精品综合精品自拍 | 久久久蜜桃 | 中文字幕亚洲精品 | 伊人成人22 | 久久影院一区 | 久久人人人 | 欧美视频免费看欧美视频 | 使劲插视频| 看片网址国产福利av中文字幕 | 爱射综合 | 久久久久亚洲av无码a片 | 久久久久久久网站 | 91成品人影院 | xxxx日本免费 | 色久在线 | 咪咪色图 | 亚洲小视频在线 | 91亚洲一区 | 午夜免费福利网站 | 欧美日本一本 | av网天堂| 姐姐的朋友2在线 | 五月婷婷六月色 | 久久午夜影视 | 阿拉伯性视频xxxx | 成人在线一区二区 | 国产黄色电影 | 色呦呦官网 | 国产网红主播精品av | 三年中国片在线高清观看 | 91porny九色 | 香蕉视频网页 | 国产大屁股喷水视频在线观看 | 精品无码久久久久久久久久 | 亚洲av色区一区二区三区 | 欧美一区二区三区爱爱 | 国产香蕉视频在线播放 | 激情999 | 国产调教在线 | 国产r级在线观看 | 欧美区在线| 色窝| 韩国伦理片观看 | 亚洲宗人网 | 91黄色在线观看 | 老头老太做爰xxx视频 | 好色婷婷 | 大奶一区 | 日韩一区二区三 | 日本美女黄色大片 | 色久影院 | 波多野结衣一区二区三区中文字幕 | 国产一区二区三区视频 | 欧美在线国产 | 国产91在线 | 亚洲 | 欧美精品一区二区三区四区五区 | 亚洲偷拍一区 | 少妇av| 麻豆影视在线 | 91xxxxx| 黄色激情网址 | 亲子伦视频一区二区三区 | 久草视频国产 | 在线观看成年人网站 | av黄色片| 国产又猛又黄又爽 | 国产3级在线 | 亚洲区第一页 | 美女福利网站 | www夜夜 | 国产精品入口66mio男同 | 波多野结衣有码 | 日韩va中文| 深爱五月综合网 | 久久久久久久综合 | 久久中文字幕无码 | 久久久久久久久久久av |