日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當(dāng)前位置: 首頁 > 编程语言 > python >内容正文

python

(转载)Python数据分析之pandas学习

發(fā)布時間:2025/4/16 python 24 豆豆
生活随笔 收集整理的這篇文章主要介紹了 (转载)Python数据分析之pandas学习 小編覺得挺不錯的,現(xiàn)在分享給大家,幫大家做個參考.

轉(zhuǎn)載地址:http://www.cnblogs.com/nxld/p/6058591.html


Python中的pandas模塊進(jìn)行數(shù)據(jù)分析。

接下來pandas介紹中將學(xué)習(xí)到如下8塊內(nèi)容:
1、數(shù)據(jù)結(jié)構(gòu)簡介:DataFrame和Series
2、數(shù)據(jù)索引index
3、利用pandas查詢數(shù)據(jù)
4、利用pandas的DataFrames進(jìn)行統(tǒng)計分析
5、利用pandas實(shí)現(xiàn)SQL操作
6、利用pandas進(jìn)行缺失值的處理
7、利用pandas實(shí)現(xiàn)Excel的數(shù)據(jù)透視表功能
8、多層索引的使用

一、數(shù)據(jù)結(jié)構(gòu)介紹

在pandas中有兩類非常重要的數(shù)據(jù)結(jié)構(gòu),即序列Series和數(shù)據(jù)框DataFrame。Series類似于numpy中的一維數(shù)組,除了通吃一維數(shù)組可用的函數(shù)或方法,而且其可通過索引標(biāo)簽的方式獲取數(shù)據(jù),還具有索引的自動對齊功能;DataFrame類似于numpy中的二維數(shù)組,同樣可以通用numpy數(shù)組的函數(shù)和方法,而且還具有其他靈活應(yīng)用,后續(xù)會介紹到。

1、Series的創(chuàng)建

序列的創(chuàng)建主要有三種方式:

1)通過一維數(shù)組創(chuàng)建序列
  • import numpy as np, pandas as pd
  • arr1 = np.arange(10)
  • arr1
  • type(arr1)

  • s1 = pd.Series(arr1)
  • s1
  • type(s1)
  • 2)通過字典的方式創(chuàng)建序列
  • dic1 = {'a':10,'b':20,'c':30,'d':40,'e':50}
  • dic1
  • type(dic1)

  • s2 = pd.Series(dic1)
  • s2
  • type(s2)
  • 3)通過DataFrame中的某一行或某一列創(chuàng)建序列

    這部分內(nèi)容我們放在后面講,因?yàn)橄旅婢烷_始將DataFrame的創(chuàng)建。

    2、DataFrame的創(chuàng)建

    數(shù)據(jù)框的創(chuàng)建主要有三種方式:

    1)通過二維數(shù)組創(chuàng)建數(shù)據(jù)框
  • arr2 = np.array(np.arange(12)).reshape(4,3)
  • arr2
  • type(arr2)

  • df1 = pd.DataFrame(arr2)
  • df1
  • type(df1)
  • 2)通過字典的方式創(chuàng)建數(shù)據(jù)框

    以下以兩種字典來創(chuàng)建數(shù)據(jù)框,一個是字典列表,一個是嵌套字典。

  • dic2 = {'a':[1,2,3,4],'b':[5,6,7,8],
  • 'c':[9,10,11,12],'d':[13,14,15,16]}
  • dic2
  • type(dic2)

  • df2 = pd.DataFrame(dic2)
  • df2
  • type(df2)

  • dic3 = {'one':{'a':1,'b':2,'c':3,'d':4},
  • 'two':{'a':5,'b':6,'c':7,'d':8},
  • 'three':{'a':9,'b':10,'c':11,'d':12}}
  • dic3
  • type(dic3)

  • df3 = pd.DataFrame(dic3)
  • df3
  • type(df3)
  • 3)通過數(shù)據(jù)框的方式創(chuàng)建數(shù)據(jù)框
  • df4 = df3[['one','three']]
  • df4
  • type(df4)

  • s3 = df3['one']
  • s3
  • type(s3)
  • 二、數(shù)據(jù)索引index

    細(xì)致的朋友可能會發(fā)現(xiàn)一個現(xiàn)象,不論是序列也好,還是數(shù)據(jù)框也好,對象的最左邊總有一個非原始數(shù)據(jù)對象,這個是什么呢?不錯,就是我們接下來要介紹的索引。
    在我看來,序列或數(shù)據(jù)框的索引有兩大用處,一個是通過索引值或索引標(biāo)簽獲取目標(biāo)數(shù)據(jù),另一個是通過索引,可以使序列或數(shù)據(jù)框的計算、操作實(shí)現(xiàn)自動化對齊,下面我們就來看看這兩個功能的應(yīng)用。

    1、通過索引值或索引標(biāo)簽獲取數(shù)據(jù)

  • s4 = pd.Series(np.array([1,1,2,3,5,8]))
  • s4
  • 如果不給序列一個指定的索引值,則序列自動生成一個從0開始的自增索引。可以通過index查看序列的索引:

  • s4.index
  • 現(xiàn)在我們?yōu)樾蛄性O(shè)定一個自定義的索引值:

  • s4.index = ['a','b','c','d','e','f']
  • s4
  • 序列有了索引,就可以通過索引值或索引標(biāo)簽進(jìn)行數(shù)據(jù)的獲取:

  • s4[3]
  • s4['e']
  • s4[[1,3,5]]
  • s4[['a','b','d','f']]
  • s4[:4]
  • s4['c':]
  • s4['b':'e']
  • 千萬注意:如果通過索引標(biāo)簽獲取數(shù)據(jù)的話,末端標(biāo)簽所對應(yīng)的值是可以返回的!在一維數(shù)組中,就無法通過索引標(biāo)簽獲取數(shù)據(jù),這也是序列不同于一維數(shù)組的一個方面。

    2、自動化對齊

    如果有兩個序列,需要對這兩個序列進(jìn)行算術(shù)運(yùn)算,這時索引的存在就體現(xiàn)的它的價值了—自動化對齊.

  • s5 = pd.Series(np.array([10,15,20,30,55,80]),
  • index = ['a','b','c','d','e','f'])
  • s5
  • s6 = pd.Series(np.array([12,11,13,15,14,16]),
  • index = ['a','c','g','b','d','f'])
  • s6

  • s5 + s6
  • s5/s6
  • 由于s5中沒有對應(yīng)的g索引,s6中沒有對應(yīng)的e索引,所以數(shù)據(jù)的運(yùn)算會產(chǎn)生兩個缺失值NaN。注意,這里的算術(shù)結(jié)果就實(shí)現(xiàn)了兩個序列索引的自動對齊,而非簡單的將兩個序列加總或相除。對于數(shù)據(jù)框的對齊,不僅僅是行索引的自動對齊,同時也會自動對齊列索引(變量名)

    數(shù)據(jù)框中同樣有索引,而且數(shù)據(jù)框是二維數(shù)組的推廣,所以其不僅有行索引,而且還存在列索引,關(guān)于數(shù)據(jù)框中的索引相比于序列的應(yīng)用要強(qiáng)大的多,這部分內(nèi)容將放在數(shù)據(jù)查詢中講解。

    三、利用pandas查詢數(shù)據(jù)

    這里的查詢數(shù)據(jù)相當(dāng)于R語言里的subset功能,可以通過布爾索引有針對的選取原數(shù)據(jù)的子集、指定行、指定列等。我們先導(dǎo)入一個student數(shù)據(jù)集:

  • student = pd.io.parsers.read_csv('C:\\Users\\admin\\Desktop\\student.csv')
  • 查詢數(shù)據(jù)的前5行或末尾5行

  • student.head()
  • student.tail()
  • 查詢指定的行

  • student.ix[[0,2,4,5,7]] #這里的ix索引標(biāo)簽函數(shù)必須是中括號[]
  • 查詢指定的列

  • student[['Name','Height','Weight']].head() #如果多個列的話,必須使用雙重中括號
  • 也可以通過ix索引標(biāo)簽查詢指定的列

  • student.ix[:,['Name','Height','Weight']].head()
  • 查詢指定的行和列

  • student.ix[[0,2,4,5,7],['Name','Height','Weight']].head()
  • 以上是從行或列的角度查詢數(shù)據(jù)的子集,現(xiàn)在我們來看看如何通過布爾索引實(shí)現(xiàn)數(shù)據(jù)的子集查詢。
    查詢所有女生的信息

  • student[student['Sex']=='F']
  • 查詢出所有12歲以上的女生信息

  • student[(student['Sex']=='F') & (student['Age']>12)]
  • 查詢出所有12歲以上的女生姓名、身高和體重

  • student[(student['Sex']=='F') & (student['Age']>12)][['Name','Height','Weight']]
  • 上面的查詢邏輯其實(shí)非常的簡單,需要注意的是,如果是多個條件的查詢,必須在&(且)或者|(或)的兩端條件用括號括起來。

    四、統(tǒng)計分析

    pandas模塊為我們提供了非常多的描述性統(tǒng)計分析的指標(biāo)函數(shù),如總和、均值、最小值、最大值等,我們來具體看看這些函數(shù):
    首先隨機(jī)生成三組數(shù)據(jù)

  • np.random.seed(1234)
  • d1 = pd.Series(2*np.random.normal(size = 100)+3)
  • d2 = np.random.f(2,4,size = 100)
  • d3 = np.random.randint(1,100,size = 100)

  • d1.count() #非空元素計算
  • d1.min() #最小值
  • d1.max() #最大值
  • d1.idxmin() #最小值的位置,類似于R中的which.min函數(shù)
  • d1.idxmax() #最大值的位置,類似于R中的which.max函數(shù)
  • d1.quantile(0.1) #10%分位數(shù)
  • d1.sum() #求和
  • d1.mean() #均值
  • d1.median() #中位數(shù)
  • d1.mode() #眾數(shù)
  • d1.var() #方差
  • d1.std() #標(biāo)準(zhǔn)差
  • d1.mad() #平均絕對偏差
  • d1.skew() #偏度
  • d1.kurt() #峰度
  • d1.describe() #一次性輸出多個描述性統(tǒng)計指標(biāo)
  • 必須注意的是,descirbe方法只能針對序列或數(shù)據(jù)框,一維數(shù)組是沒有這個方法的

    這里自定義一個函數(shù),將這些統(tǒng)計描述指標(biāo)全部匯總到一起:

  • def stats(x):
  • return pd.Series([x.count(),x.min(),x.idxmin(),
  • x.quantile(.25),x.median(),
  • x.quantile(.75),x.mean(),
  • x.max(),x.idxmax(),
  • x.mad(),x.var(),
  • x.std(),x.skew(),x.kurt()],
  • index = ['Count','Min','Whicn_Min',
  • 'Q1','Median','Q3','Mean',
  • 'Max','Which_Max','Mad',
  • 'Var','Std','Skew','Kurt'])
  • stats(d1)
  • 在實(shí)際的工作中,我們可能需要處理的是一系列的數(shù)值型數(shù)據(jù)框,如何將這個函數(shù)應(yīng)用到數(shù)據(jù)框中的每一列呢?可以使用apply函數(shù),這個非常類似于R中的apply的應(yīng)用方法。
    將之前創(chuàng)建的d1,d2,d3數(shù)據(jù)構(gòu)建數(shù)據(jù)框:

  • df = pd.DataFrame(np.array([d1,d2,d3]).T,columns=['x1','x2','x3'])
  • df.head()
  • df.apply(stats)
  • 非常完美,就這樣很簡單的創(chuàng)建了數(shù)值型數(shù)據(jù)的統(tǒng)計性描述。如果是離散型數(shù)據(jù)呢?就不能用這個統(tǒng)計口徑了,我們需要統(tǒng)計離散變量的觀測數(shù)、唯一值個數(shù)、眾數(shù)水平及個數(shù)。你只需要使用describe方法就可以實(shí)現(xiàn)這樣的統(tǒng)計了。

  • student['Sex'].describe()
  • 除以上的簡單描述性統(tǒng)計之外,還提供了連續(xù)變量的相關(guān)系數(shù)(corr)和協(xié)方差矩陣(cov)的求解,這個跟R語言是一致的用法。

  • df.corr()
  • 關(guān)于相關(guān)系數(shù)的計算可以調(diào)用pearson方法或kendell方法或spearman方法,默認(rèn)使用pearson方法。

  • df.corr('spearman')
  • 如果只想關(guān)注某一個變量與其余變量的相關(guān)系數(shù)的話,可以使用corrwith,如下方只關(guān)心x1與其余變量的相關(guān)系數(shù):

  • df.corrwith(df['x1'])
  • 數(shù)值型變量間的協(xié)方差矩陣

  • df.cov()

    五、類似于SQL的操作

    在SQL中常見的操作主要是增、刪、改、查幾個動作,那么pandas能否實(shí)現(xiàn)對數(shù)據(jù)的這幾項(xiàng)操作呢?答案是Of Course!

    增:添加新行或增加新列
  • In [99]: dic = {'Name':['LiuShunxiang','Zhangshan'],
  • ...: 'Sex':['M','F'],'Age':[27,23],
  • ...: 'Height':[165.7,167.2],'Weight':[61,63]}

  • In [100]: student2 = pd.DataFrame(dic)

  • In [101]: student2
  • Out[101]:
  • Age Height Name Sex Weight
  • 0 27 165.7 LiuShunxiang M 61
  • 1 23 167.2 Zhangshan F 63
  • 現(xiàn)在將student2中的數(shù)據(jù)新增到student中,可以通過concat函數(shù)實(shí)現(xiàn):

    注意到了嗎?在數(shù)據(jù)庫中union必須要求兩張表的列順序一致,而這里concat函數(shù)可以自動對齊兩個數(shù)據(jù)框的變量!

    新增列的話,其實(shí)在pandas中就更簡單了,例如在student2中新增一列學(xué)生成績:

    對于新增的列沒有賦值,就會出現(xiàn)空NaN的形式。

    刪:刪除表、觀測行或變量列

    刪除數(shù)據(jù)框student2,通過del命令實(shí)現(xiàn),該命令可以刪除Python的所有對象。

    刪除指定的行

    原數(shù)據(jù)中的第1,2,4,7行的數(shù)據(jù)已經(jīng)被刪除了。
    根據(jù)布爾索引刪除行數(shù)據(jù),其實(shí)這個刪除就是保留刪除條件的反面數(shù)據(jù),例如刪除所有14歲以下的學(xué)生:

    刪除指定的列

    我們發(fā)現(xiàn),不論是刪除行還是刪除列,都可以通過drop方法實(shí)現(xiàn),只需要設(shè)定好刪除的軸即可,即調(diào)整drop方法中的axis參數(shù)。默認(rèn)該參數(shù)為0,表示刪除行觀測,如果需要刪除列變量,則需設(shè)置為1。

    改:修改原始記錄的值

    如果發(fā)現(xiàn)表中的某些數(shù)據(jù)錯誤了,如何更改原來的值呢?我們試試結(jié)合布爾索引和賦值的方法:
    例如發(fā)現(xiàn)student3中姓名為Liushunxiang的學(xué)生身高錯了,應(yīng)該是173,如何改呢?

    這樣就可以把原來的身高修改為現(xiàn)在的170了。
    看,關(guān)于索引的操作非常靈活、方便吧,就這樣輕松搞定數(shù)據(jù)的更改。

    查:有關(guān)數(shù)據(jù)查詢部分,上面已經(jīng)介紹過,下面重點(diǎn)講講聚合、排序和多表連接操作。
    聚合:pandas模塊中可以通過groupby()函數(shù)實(shí)現(xiàn)數(shù)據(jù)的聚合操作

    根據(jù)性別分組,計算各組別中學(xué)生身高和體重的平均值:

    如果不對原始數(shù)據(jù)作限制的話,聚合函數(shù)會自動選擇數(shù)值型數(shù)據(jù)進(jìn)行聚合計算。如果不想對年齡計算平均值的話,就需要剔除改變量:

    groupby還可以使用多個分組變量,例如根本年齡和性別分組,計算身高與體重的平均值:

    當(dāng)然,還可以對每個分組計算多個統(tǒng)計量:

    是不是很簡單,只需一句就能完成SQL中的SELECT…FROM…GROUP BY…功能,何樂而不為呢?

    排序:

    排序在日常的統(tǒng)計分析中還是比較常見的操作,我們可以使用order、sort_index和sort_values實(shí)現(xiàn)序列和數(shù)據(jù)框的排序工作:

    我們再試試降序排序的設(shè)置:

    上面兩個結(jié)果其實(shí)都是按值排序,并且結(jié)果中都給出了警告信息,即建議使用sort_values()函數(shù)進(jìn)行按值排序。

    在數(shù)據(jù)框中一般都是按值排序,例如:

    多表連接:

    多表之間的連接也是非常常見的數(shù)據(jù)庫操作,連接分內(nèi)連接和外連接,在數(shù)據(jù)庫語言中通過join關(guān)鍵字實(shí)現(xiàn),pandas我比較建議使用merger函數(shù)實(shí)現(xiàn)數(shù)據(jù)的各種連接操作。
    如下是構(gòu)造一張學(xué)生的成績表:

    現(xiàn)在想把學(xué)生表student與學(xué)生成績表score做一個關(guān)聯(lián),該如何操作呢?

    注意,默認(rèn)情況下,merge函數(shù)實(shí)現(xiàn)的是兩個表之間的內(nèi)連接,即返回兩張表中共同部分的數(shù)據(jù)。可以通過how參數(shù)設(shè)置連接的方式,left為左連接;right為右連接;outer為外連接。

    左連接實(shí)現(xiàn)的是保留student表中的所有信息,同時將score表的信息與之配對,能配多少配多少,對于沒有配對上的Name,將會顯示成績?yōu)镹aN。

  • 六、缺失值處理

    現(xiàn)實(shí)生活中的數(shù)據(jù)是非常雜亂的,其中缺失值也是非常常見的,對于缺失值的存在可能會影響到后期的數(shù)據(jù)分析或挖掘工作,那么我們該如何處理這些缺失值呢?常用的有三大類方法,即刪除法、填補(bǔ)法和插值法。
    刪除法:當(dāng)數(shù)據(jù)中的某個變量大部分值都是缺失值,可以考慮刪除改變量;當(dāng)缺失值是隨機(jī)分布的,且缺失的數(shù)量并不是很多是,也可以刪除這些缺失的觀測。
    替補(bǔ)法:對于連續(xù)型變量,如果變量的分布近似或就是正態(tài)分布的話,可以用均值替代那些缺失值;如果變量是有偏的,可以使用中位數(shù)來代替那些缺失值;對于離散型變量,我們一般用眾數(shù)去替換那些存在缺失的觀測。
    插補(bǔ)法:插補(bǔ)法是基于蒙特卡洛模擬法,結(jié)合線性模型、廣義線性模型、決策樹等方法計算出來的預(yù)測值替換缺失值。

    我們這里就介紹簡單的刪除法和替補(bǔ)法:

    這是一組含有缺失值的序列,我們可以結(jié)合sum函數(shù)和isnull函數(shù)來檢測數(shù)據(jù)中含有多少缺失值:

  • In [130]: sum(pd.isnull(s))
  • Out[130]: 9
  • 直接刪除缺失值

    默認(rèn)情況下,dropna會刪除任何含有缺失值的行,我們再構(gòu)造一個數(shù)據(jù)框試試:

    返回結(jié)果表明,數(shù)據(jù)中只要含有缺失值NaN,該數(shù)據(jù)行就會被刪除,如果使用參數(shù)how=’all’,則表明只刪除所有行為缺失值的觀測。

    使用一個常量來填補(bǔ)缺失值,可以使用fillna函數(shù)實(shí)現(xiàn)簡單的填補(bǔ)工作:
    1)用0填補(bǔ)所有缺失值

    2)采用前項(xiàng)填充或后向填充

    3)使用常量填充不同的列

    4)用均值或中位數(shù)填充各自的列

    很顯然,在使用填充法時,相對于常數(shù)填充或前項(xiàng)、后項(xiàng)填充,使用各列的眾數(shù)、均值或中位數(shù)填充要更加合理一點(diǎn),這也是工作中常用的一個快捷手段。

    七、數(shù)據(jù)透視表

    在Excel中有一個非常強(qiáng)大的功能就是數(shù)據(jù)透視表,通過托拉拽的方式可以迅速的查看數(shù)據(jù)的聚合情況,這里的聚合可以是計數(shù)、求和、均值、標(biāo)準(zhǔn)差等。
    pandas為我們提供了非常強(qiáng)大的函數(shù)pivot_table(),該函數(shù)就是實(shí)現(xiàn)數(shù)據(jù)透視表功能的。對于上面所說的一些聚合函數(shù),可以通過參數(shù)aggfunc設(shè)定。我們先看看這個函數(shù)的語法和參數(shù)吧:

  • pivot_table(data,values=None,
  • index=None,
  • columns=None,
  • aggfunc='mean',
  • fill_value=None,
  • margins=False,
  • dropna=True,
  • margins_name='All')
  • data:需要進(jìn)行數(shù)據(jù)透視表操作的數(shù)據(jù)框
  • values:指定需要聚合的字段
  • index:指定某些原始變量作為行索引
  • columns:指定哪些離散的分組變量
  • aggfunc:指定相應(yīng)的聚合函數(shù)
  • fill_value:使用一個常數(shù)替代缺失值,默認(rèn)不替換
  • margins:是否進(jìn)行行或列的匯總,默認(rèn)不匯總
  • dropna:默認(rèn)所有觀測為缺失的列
  • margins_name:默認(rèn)行匯總或列匯總的名稱為'All'
  • 我們?nèi)匀灰詓tudent表為例,來認(rèn)識一下數(shù)據(jù)透視表pivot_table函數(shù)的用法:
    對一個分組變量(Sex),一個數(shù)值變量(Height)作統(tǒng)計匯總

    對一個分組變量(Sex),兩個數(shù)值變量(Height,Weight)作統(tǒng)計匯總

    對兩個分組變量(Sex,Age),兩個數(shù)值變量(Height,Weight)作統(tǒng)計匯總

    很顯然這樣的結(jié)果并不像Excel中預(yù)期的那樣,該如何變成列聯(lián)表的形式的?很簡單,只需將結(jié)果進(jìn)行非堆疊操作(unstack)即可:

    看,這樣的結(jié)果是不是比上面那種看起來更舒服一點(diǎn)?

    使用多個聚合函數(shù)

    有關(guān)更多數(shù)據(jù)透視表的操作,可參考《Pandas透視表(pivot_table)詳解》一文,鏈接地址:http://python.jobbole.com/81212/

    八、多層索引的使用

    最后我們再來講講pandas中的一個重要功能,那就是多層索引。在序列中它可以實(shí)現(xiàn)在一個軸上擁有多個索引,就類似于Excel中常見的這種形式:

    對于這樣的數(shù)據(jù)格式有什么好處呢?pandas可以幫我們實(shí)現(xiàn)用低維度形式處理高維數(shù)數(shù)據(jù),這里舉個例子也許你就能明白了:

    對于這種多層次索引的序列,取數(shù)據(jù)就顯得非常簡單了:

    對于這種多層次索引的序列,我們還可以非常方便的將其轉(zhuǎn)換為數(shù)據(jù)框的形式:

    以上針對的是序列的多層次索引,數(shù)據(jù)框也同樣有多層次的索引,而且每條軸上都可以有這樣的索引,就類似于Excel中常見的這種形式:

    我們不妨構(gòu)造一個類似的高維數(shù)據(jù)框:

    同樣,數(shù)據(jù)框中的多層索引也可以非常便捷的取出大塊數(shù)據(jù):

    在數(shù)據(jù)框中使用多層索引,可以將整個數(shù)據(jù)集控制在二維表結(jié)構(gòu)中,這對于數(shù)據(jù)重塑和基于分組的操作(如數(shù)據(jù)透視表的生成)比較有幫助。
    就拿student二維數(shù)據(jù)框?yàn)槔?#xff0c;我們構(gòu)造一個多層索引數(shù)據(jù)集:

    講到這里,我們關(guān)于pandas模塊的學(xué)習(xí)基本完成,其實(shí)在掌握了pandas這8個主要的應(yīng)用方法就可以靈活的解決很多工作中的數(shù)據(jù)處理、統(tǒng)計分析等任務(wù)。有關(guān)更多的pandas介紹,可參考pandas官方文檔:http://pandas.pydata.org/pandas-docs/version/0.17.0/whatsnew.html


    總結(jié)

    以上是生活随笔為你收集整理的(转载)Python数据分析之pandas学习的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。

    如果覺得生活随笔網(wǎng)站內(nèi)容還不錯,歡迎將生活随笔推薦給好友。