日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問(wèn) 生活随笔!

生活随笔

當(dāng)前位置: 首頁(yè) > 编程资源 > 编程问答 >内容正文

编程问答

高阶奇异值分解(HOSVD)理解

發(fā)布時(shí)間:2025/4/16 编程问答 34 豆豆
生活随笔 收集整理的這篇文章主要介紹了 高阶奇异值分解(HOSVD)理解 小編覺(jué)得挺不錯(cuò)的,現(xiàn)在分享給大家,幫大家做個(gè)參考.

在基于情境上下文的推薦系統(tǒng)中,HOSVD是常用方法,這里通過(guò)一篇文章簡(jiǎn)單理解下HOSVD。

1、適用場(chǎng)景:

This decomposition plays an important role in various domains, such as:
? Spectral analysis,
? Non-linear modeling,
? Communication and Radar processing,
? blind source separation,
? image processing,
? biomedical applications (magnetic resonance imaging and electrocardiography),
? web search,
? computer facial recognition,
? handwriting analysis,

2、HOSVD定義:

3、張量分解

1)standard unfoldings

巨大的計(jì)算成本。

2)Higer PCA


3)Kernel decomposition in Volterra series

4)1-D harmonic retrieval problem

5)Oblique unfoldings to decrease the complexity



6)Complexities of the HOSVD algorithms

HOSVD主要在于張量分解方法。

4、展望

?Structured tensors imply strongly structured modes if oblique unfoldings are used. Not true for standard unfoldings !
? Increasing the structure of the modes allows to exploit fast techniques from numerical linear algebra based on - the column-redundancy property
- fast products vector/matrix for Toeplitz or Hankel matrices.
? Fastest implementation of the rank-truncated HOSVD (dedicated to Hankel tensors) has a quasilinear complexity w.r.t. the tensor dimensions.

? Generalize to tensors of order > 3.

? Extend to other HOSVD (constrained HOSVD, cross-HOSVD,...)?


最基礎(chǔ)的可以參考維基https://en.wikipedia.org/wiki/Higher-order_singular_value_decomposition

總結(jié)

以上是生活随笔為你收集整理的高阶奇异值分解(HOSVD)理解的全部?jī)?nèi)容,希望文章能夠幫你解決所遇到的問(wèn)題。

如果覺(jué)得生活随笔網(wǎng)站內(nèi)容還不錯(cuò),歡迎將生活随笔推薦給好友。