【IM】关于集成学习Bagging和Boosting的理解
生活随笔
收集整理的這篇文章主要介紹了
【IM】关于集成学习Bagging和Boosting的理解
小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
集成學習在各大比賽中非常流程,如XGboost、LGBM等,對其基學習器決策樹及其剪枝等,可參考:
https://blog.csdn.net/fjssharpsword/article/details/54861274
集成學習可參考:
https://blog.csdn.net/fjssharpsword/article/details/61913092
關于Adaboost的matlab源碼和圖示:
>> n=50;x=randn(n,2);y=2*(x(:,1)>x(:,2))-1;b=5000; >> a=50;Y=zeros(a,a);yy=zeros(size(y));w=ones(n,1)/n; >> X0=linspace(-3,3,a); [X(:,:,1) X(:,:,2)] = meshgrid(X0); >> for j=1:bwy=w.*y;d=ceil(2*rand);[xs,xi]=sort(x(:,d));el=cumsum(wy(xi));eu=cumsum(wy(xi(end:-1:1)));e=eu(end-1:-1:1)-el(1:end-1);[em,ei]=max(abs(e));c=mean(xs(ei:ei+1));s=sign(e(ei));yh=sign(s*(x(:,d)-c));R=w'*(1-yh.*y)/2;t=log((1-R)/R)/2;yy=yy+yh*t;w=exp(-yy.*y);w=w/sum(w);Y=Y+sign(s*(X(:,:,d)-c))*t;end >> figure(1);clf;hold on;axis([-3 3 -3 3]); >> colormap([1 0.7 1;0.7 1 1]);contourf(X0,X0,sign(Y)); >> plot(x(y==1,1),x(y==1,2),'bo'); >> plot(x(y==-1,1),x(y==-1,2),'rx');關于Adaboost通過指數損失來推導:
總結
以上是生活随笔為你收集整理的【IM】关于集成学习Bagging和Boosting的理解的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 【IM】关于支持向量机分类的理解
- 下一篇: 【IM】关于条件随机场CRF的理解