日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當(dāng)前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

deep learning 作業 2.2

發(fā)布時(shí)間:2025/4/16 编程问答 38 豆豆
生活随笔 收集整理的這篇文章主要介紹了 deep learning 作業 2.2 小編覺得挺不錯(cuò)的,現(xiàn)在分享給大家,幫大家做個(gè)參考.

為什么80%的碼農(nóng)都做不了架構(gòu)師?>>> ??

Optimization Methods

Until now, you've always used Gradient Descent to update the parameters and minimize the cost. In this notebook, you will learn more advanced optimization methods that can speed up learning and perhaps even get you to a better final value for the cost function. Having a good optimization algorithm can be the difference between waiting days vs. just a few hours to get a good result.

Gradient descent goes "downhill" on a cost function?JJ. Think of it as trying to do this:

**Figure 1**?: **Minimizing the cost is like finding the lowest point in a hilly landscape**
At each step of the training, you update your parameters following a certain direction to try to get to the lowest possible point.

Notations: As usual,??J?a=?J?a=?da?for any variable?a.

To get started, run the following code to import the libraries you will need.

In?[1]:

import numpy as np import matplotlib.pyplot as plt import scipy.io import math import sklearn import sklearn.datasetsfrom opt_utils import load_params_and_grads, initialize_parameters, forward_propagation, backward_propagation from opt_utils import compute_cost, predict, predict_dec, plot_decision_boundary, load_dataset from testCases import *%matplotlib inline plt.rcParams['figure.figsize'] = (7.0, 4.0) # set default size of plots plt.rcParams['image.interpolation'] = 'nearest' plt.rcParams['image.cmap'] = 'gray'

1 - Gradient Descent

A simple optimization method in machine learning is gradient descent (GD). When you take gradient steps with respect to all?mm?examples on each step, it is also called Batch Gradient Descent.

Warm-up exercise: Implement the gradient descent update rule. The gradient descent rule is, for?l=1,...,Ll=1,...,L:

W[l]=W[l]?α?dW[l](1)(1)W[l]=W[l]?α?dW[l]

b[l]=b[l]?α?db[l](2)(2)b[l]=b[l]?α?db[l]

where L is the number of layers and?αα?is the learning rate. All parameters should be stored in the?parameters?dictionary. Note that the iterator?l?starts at 0 in the?for?loop while the first parameters are?W[1]W[1]?and?b[1]b[1]. You need to shift?l?to?l+1?when coding.

In?[2]:

# GRADED FUNCTION: update_parameters_with_gddef update_parameters_with_gd(parameters, grads, learning_rate):"""Update parameters using one step of gradient descentArguments:parameters -- python dictionary containing your parameters to be updated:parameters['W' + str(l)] = Wlparameters['b' + str(l)] = blgrads -- python dictionary containing your gradients to update each parameters:grads['dW' + str(l)] = dWlgrads['db' + str(l)] = dbllearning_rate -- the learning rate, scalar.Returns:parameters -- python dictionary containing your updated parameters """L = len(parameters) // 2 # number of layers in the neural networks# Update rule for each parameterfor l in range(L):### START CODE HERE ### (approx. 2 lines)parameters["W" + str(l+1)] = parameters["W" + str(l+1)] - learning_rate * grads['dW' + str(l+1)]parameters["b" + str(l+1)] = parameters["b" + str(l+1)] - learning_rate * grads['db' + str(l+1)]### END CODE HERE ###return parameters

In?[3]:

parameters, grads, learning_rate = update_parameters_with_gd_test_case()parameters = update_parameters_with_gd(parameters, grads, learning_rate) print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"])) W1 = [[ 1.63535156 -0.62320365 -0.53718766][-1.07799357 0.85639907 -2.29470142]] b1 = [[ 1.74604067][-0.75184921]] W2 = [[ 0.32171798 -0.25467393 1.46902454][-2.05617317 -0.31554548 -0.3756023 ][ 1.1404819 -1.09976462 -0.1612551 ]] b2 = [[-0.88020257][ 0.02561572][ 0.57539477]]

Expected Output:

**W1**[[ 1.63535156 -0.62320365 -0.53718766] [-1.07799357 0.85639907 -2.29470142]]
**b1**[[ 1.74604067] [-0.75184921]]
**W2**[[ 0.32171798 -0.25467393 1.46902454] [-2.05617317 -0.31554548 -0.3756023 ] [ 1.1404819 -1.09976462 -0.1612551 ]]
**b2**[[-0.88020257] [ 0.02561572] [ 0.57539477]]

A variant of this is Stochastic Gradient Descent (SGD), which is equivalent to mini-batch gradient descent where each mini-batch has just 1 example. The update rule that you have just implemented does not change. What changes is that you would be computing gradients on just one training example at a time, rather than on the whole training set. The code examples below illustrate the difference between stochastic gradient descent and (batch) gradient descent.

  • (Batch) Gradient Descent:
X = data_input Y = labels parameters = initialize_parameters(layers_dims) for i in range(0, num_iterations):# Forward propagationa, caches = forward_propagation(X, parameters)# Compute cost.cost = compute_cost(a, Y)# Backward propagation.grads = backward_propagation(a, caches, parameters)# Update parameters.parameters = update_parameters(parameters, grads)
  • Stochastic Gradient Descent:
X = data_input Y = labels parameters = initialize_parameters(layers_dims) for i in range(0, num_iterations):for j in range(0, m):# Forward propagationa, caches = forward_propagation(X[:,j], parameters)# Compute costcost = compute_cost(a, Y[:,j])# Backward propagationgrads = backward_propagation(a, caches, parameters)# Update parameters.parameters = update_parameters(parameters, grads)

In Stochastic Gradient Descent, you use only 1 training example before updating the gradients. When the training set is large, SGD can be faster. But the parameters will "oscillate" toward the minimum rather than converge smoothly. Here is an illustration of this:

**Figure 1**?: **SGD vs GD**
"+" denotes a minimum of the cost. SGD leads to many oscillations to reach convergence. But each step is a lot faster to compute for SGD than for GD, as it uses only one training example (vs. the whole batch for GD).

Note?also that implementing SGD requires 3 for-loops in total:

  • Over the number of iterations
  • Over the?mm?training examples
  • Over the layers (to update all parameters, from?(W[1],b[1])(W[1],b[1])?to?(W[L],b[L])(W[L],b[L]))
  • In practice, you'll often get faster results if you do not use neither the whole training set, nor only one training example, to perform each update. Mini-batch gradient descent uses an intermediate number of examples for each step. With mini-batch gradient descent, you loop over the mini-batches instead of looping over individual training examples.

    **Figure 2**?:?**SGD vs Mini-Batch GD**
    "+" denotes a minimum of the cost. Using mini-batches in your optimization algorithm often leads to faster optimization.

    What you should remember:

    • The difference between gradient descent, mini-batch gradient descent and stochastic gradient descent is the number of examples you use to perform one update step.
    • You have to tune a learning rate hyperparameter?αα.
    • With a well-turned mini-batch size, usually it outperforms either gradient descent or stochastic gradient descent (particularly when the training set is large).

    2 - Mini-Batch Gradient descent

    Let's learn how to build mini-batches from the training set (X, Y).

    There are two steps:

    • Shuffle: Create a shuffled version of the training set (X, Y) as shown below. Each column of X and Y represents a training example. Note that the random shuffling is done synchronously between X and Y. Such that after the shuffling the?ithith?column of X is the example corresponding to the?ithithlabel in Y. The shuffling step ensures that examples will be split randomly into different mini-batches.

    • Partition: Partition the shuffled (X, Y) into mini-batches of size?mini_batch_size?(here 64). Note that the number of training examples is not always divisible by?mini_batch_size. The last mini batch might be smaller, but you don't need to worry about this. When the final mini-batch is smaller than the full?mini_batch_size, it will look like this:

    Exercise: Implement?random_mini_batches. We coded the shuffling part for you. To help you with the partitioning step, we give you the following code that selects the indexes for the?1st1st?and?2nd2nd?mini-batches:

    first_mini_batch_X = shuffled_X[:, 0 : mini_batch_size] second_mini_batch_X = shuffled_X[:, mini_batch_size : 2 * mini_batch_size] ...

    Note that the last mini-batch might end up smaller than?mini_batch_size=64. Let??s??s??represents?ss?rounded down to the nearest integer (this is?math.floor(s)?in Python). If the total number of examples is not a multiple of?mini_batch_size=64?then there will be??mmini_batch_size??mmini_batch_size??mini-batches with a full 64 examples, and the number of examples in the final mini-batch will be (m?mini_batch_size×?mmini_batch_size?m?mini_batch_size×?mmini_batch_size?).

    In?[4]:

    # GRADED FUNCTION: random_mini_batchesdef random_mini_batches(X, Y, mini_batch_size = 64, seed = 0):"""Creates a list of random minibatches from (X, Y)Arguments:X -- input data, of shape (input size, number of examples)Y -- true "label" vector (1 for blue dot / 0 for red dot), of shape (1, number of examples)mini_batch_size -- size of the mini-batches, integerReturns:mini_batches -- list of synchronous (mini_batch_X, mini_batch_Y)"""np.random.seed(seed) # To make your "random" minibatches the same as oursm = X.shape[1] # number of training examplesmini_batches = []# Step 1: Shuffle (X, Y)permutation = list(np.random.permutation(m))shuffled_X = X[:, permutation]shuffled_Y = Y[:, permutation].reshape((1,m))# Step 2: Partition (shuffled_X, shuffled_Y). Minus the end case.num_complete_minibatches = math.floor(m/mini_batch_size) # number of mini batches of size mini_batch_size in your partitionningfor k in range(0, num_complete_minibatches):### START CODE HERE ### (approx. 2 lines)mini_batch_X = shuffled_X[:, k*mini_batch_size : (k+1) * mini_batch_size]mini_batch_Y = shuffled_Y[:, k*mini_batch_size : (k+1) * mini_batch_size]### END CODE HERE ###mini_batch = (mini_batch_X, mini_batch_Y)mini_batches.append(mini_batch)# Handling the end case (last mini-batch < mini_batch_size)if m % mini_batch_size != 0:### START CODE HERE ### (approx. 2 lines)mini_batch_X = shuffled_X[:, num_complete_minibatches*mini_batch_size:]mini_batch_Y = shuffled_Y[:, num_complete_minibatches*mini_batch_size:]### END CODE HERE ###mini_batch = (mini_batch_X, mini_batch_Y)mini_batches.append(mini_batch)return mini_batches

    In?[5]:

    X_assess, Y_assess, mini_batch_size = random_mini_batches_test_case() mini_batches = random_mini_batches(X_assess, Y_assess, mini_batch_size)print ("shape of the 1st mini_batch_X: " + str(mini_batches[0][0].shape)) print ("shape of the 2nd mini_batch_X: " + str(mini_batches[1][0].shape)) print ("shape of the 3rd mini_batch_X: " + str(mini_batches[2][0].shape)) print ("shape of the 1st mini_batch_Y: " + str(mini_batches[0][1].shape)) print ("shape of the 2nd mini_batch_Y: " + str(mini_batches[1][1].shape)) print ("shape of the 3rd mini_batch_Y: " + str(mini_batches[2][1].shape)) print ("mini batch sanity check: " + str(mini_batches[0][0][0][0:3])) shape of the 1st mini_batch_X: (12288, 64) shape of the 2nd mini_batch_X: (12288, 64) shape of the 3rd mini_batch_X: (12288, 20) shape of the 1st mini_batch_Y: (1, 64) shape of the 2nd mini_batch_Y: (1, 64) shape of the 3rd mini_batch_Y: (1, 20) mini batch sanity check: [ 0.90085595 -0.7612069 0.2344157 ]

    Expected Output:

    **shape of the 1st mini_batch_X**(12288, 64)
    **shape of the 2nd mini_batch_X**(12288, 64)
    **shape of the 3rd mini_batch_X**(12288, 20)
    **shape of the 1st mini_batch_Y**(1, 64)
    **shape of the 2nd mini_batch_Y**(1, 64)
    **shape of the 3rd mini_batch_Y**(1, 20)
    **mini batch sanity check**[ 0.90085595 -0.7612069 0.2344157 ]

    What you should remember:

    • Shuffling and Partitioning are the two steps required to build mini-batches
    • Powers of two are often chosen to be the mini-batch size, e.g., 16, 32, 64, 128.

    3 - Momentum

    Because mini-batch gradient descent makes a parameter update after seeing just a subset of examples, the direction of the update has some variance, and so the path taken by mini-batch gradient descent will "oscillate" toward convergence. Using momentum can reduce these oscillations.

    Momentum takes into account the past gradients to smooth out the update. We will store the 'direction' of the previous gradients in the variable?vv. Formally, this will be the exponentially weighted average of the gradient on previous steps. You can also think of?vv?as the "velocity" of a ball rolling downhill, building up speed (and momentum) according to the direction of the gradient/slope of the hill.

    ?

    **Figure 3**: The red arrows shows the direction taken by one step of mini-batch gradient descent with momentum. The blue points show the direction of the gradient (with respect to the current mini-batch) on each step. Rather than just following the gradient, we let the gradient influence?vv?and then take a step in the direction of?vv.

    ?

    Exercise: Initialize the velocity. The velocity,?vv, is a python dictionary that needs to be initialized with arrays of zeros. Its keys are the same as those in the?grads?dictionary, that is: for?l=1,...,Ll=1,...,L:

    v["dW" + str(l+1)] = ... #(numpy array of zeros with the same shape as parameters["W" + str(l+1)]) v["db" + str(l+1)] = ... #(numpy array of zeros with the same shape as parameters["b" + str(l+1)])

    Note?that the iterator l starts at 0 in the for loop while the first parameters are v["dW1"] and v["db1"] (that's a "one" on the superscript). This is why we are shifting l to l+1 in the?for?loop.

    In?[6]:

    # GRADED FUNCTION: initialize_velocitydef initialize_velocity(parameters):"""Initializes the velocity as a python dictionary with:- keys: "dW1", "db1", ..., "dWL", "dbL" - values: numpy arrays of zeros of the same shape as the corresponding gradients/parameters.Arguments:parameters -- python dictionary containing your parameters.parameters['W' + str(l)] = Wlparameters['b' + str(l)] = blReturns:v -- python dictionary containing the current velocity.v['dW' + str(l)] = velocity of dWlv['db' + str(l)] = velocity of dbl"""L = len(parameters) // 2 # number of layers in the neural networksv = {}# Initialize velocityfor l in range(L):### START CODE HERE ### (approx. 2 lines)v["dW" + str(l+1)] = np.zeros((parameters["W" + str(l+1)].shape))v["db" + str(l+1)] = np.zeros((parameters["b" + str(l+1)].shape))### END CODE HERE ###return v

    In?[7]:

    parameters = initialize_velocity_test_case()v = initialize_velocity(parameters) print("v[\"dW1\"] = " + str(v["dW1"])) print("v[\"db1\"] = " + str(v["db1"])) print("v[\"dW2\"] = " + str(v["dW2"])) print("v[\"db2\"] = " + str(v["db2"])) v["dW1"] = [[ 0. 0. 0.][ 0. 0. 0.]] v["db1"] = [[ 0.][ 0.]] v["dW2"] = [[ 0. 0. 0.][ 0. 0. 0.][ 0. 0. 0.]] v["db2"] = [[ 0.][ 0.][ 0.]]

    Expected Output:

    **v["dW1"]**[[ 0. 0. 0.] [ 0. 0. 0.]]
    **v["db1"]**[[ 0.] [ 0.]]
    **v["dW2"]**[[ 0. 0. 0.] [ 0. 0. 0.] [ 0. 0. 0.]]
    **v["db2"]**[[ 0.] [ 0.] [ 0.]]

    Exercise: Now, implement the parameters update with momentum. The momentum update rule is, for?l=1,...,Ll=1,...,L:

    {vdW[l]=βvdW[l]+(1?β)dW[l]W[l]=W[l]?αvdW[l](3)(3){vdW[l]=βvdW[l]+(1?β)dW[l]W[l]=W[l]?αvdW[l]

    {vdb[l]=βvdb[l]+(1?β)db[l]b[l]=b[l]?αvdb[l](4)(4){vdb[l]=βvdb[l]+(1?β)db[l]b[l]=b[l]?αvdb[l]

    where L is the number of layers,?ββ?is the momentum and?αα?is the learning rate. All parameters should be stored in the?parameters?dictionary. Note that the iterator?l?starts at 0 in the?for?loop while the first parameters are?W[1]W[1]?and?b[1]b[1]?(that's a "one" on the superscript). So you will need to shift?l?to?l+1?when coding.

    In?[8]:

    # GRADED FUNCTION: update_parameters_with_momentumdef update_parameters_with_momentum(parameters, grads, v, beta, learning_rate):"""Update parameters using MomentumArguments:parameters -- python dictionary containing your parameters:parameters['W' + str(l)] = Wlparameters['b' + str(l)] = blgrads -- python dictionary containing your gradients for each parameters:grads['dW' + str(l)] = dWlgrads['db' + str(l)] = dblv -- python dictionary containing the current velocity:v['dW' + str(l)] = ...v['db' + str(l)] = ...beta -- the momentum hyperparameter, scalarlearning_rate -- the learning rate, scalarReturns:parameters -- python dictionary containing your updated parameters v -- python dictionary containing your updated velocities"""L = len(parameters) // 2 # number of layers in the neural networks# Momentum update for each parameterfor l in range(L):### START CODE HERE ### (approx. 4 lines)# compute velocitiesv["dW" + str(l+1)] = beta*v["dW" + str(l+1)] + (1-beta)*grads['dW' + str(l+1)]v["db" + str(l+1)] = beta*v["db" + str(l+1)] + (1-beta)*grads['db' + str(l+1)]# update parametersparameters["W" + str(l+1)] = parameters["W" + str(l+1)] - learning_rate * v["dW" + str(l+1)]parameters["b" + str(l+1)] = parameters["b" + str(l+1)] - learning_rate * v["db" + str(l+1)]### END CODE HERE ###return parameters, v

    In?[9]:

    parameters, grads, v = update_parameters_with_momentum_test_case()parameters, v = update_parameters_with_momentum(parameters, grads, v, beta = 0.9, learning_rate = 0.01) print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"])) print("v[\"dW1\"] = " + str(v["dW1"])) print("v[\"db1\"] = " + str(v["db1"])) print("v[\"dW2\"] = " + str(v["dW2"])) print("v[\"db2\"] = " + str(v["db2"])) W1 = [[ 1.62544598 -0.61290114 -0.52907334][-1.07347112 0.86450677 -2.30085497]] b1 = [[ 1.74493465][-0.76027113]] W2 = [[ 0.31930698 -0.24990073 1.4627996 ][-2.05974396 -0.32173003 -0.38320915][ 1.13444069 -1.0998786 -0.1713109 ]] b2 = [[-0.87809283][ 0.04055394][ 0.58207317]] v["dW1"] = [[-0.11006192 0.11447237 0.09015907][ 0.05024943 0.09008559 -0.06837279]] v["db1"] = [[-0.01228902][-0.09357694]] v["dW2"] = [[-0.02678881 0.05303555 -0.06916608][-0.03967535 -0.06871727 -0.08452056][-0.06712461 -0.00126646 -0.11173103]] v["db2"] = [[ 0.02344157][ 0.16598022][ 0.07420442]]

    Expected Output:

    **W1**[[ 1.62544598 -0.61290114 -0.52907334] [-1.07347112 0.86450677 -2.30085497]]
    **b1**[[ 1.74493465] [-0.76027113]]
    **W2**[[ 0.31930698 -0.24990073 1.4627996 ] [-2.05974396 -0.32173003 -0.38320915] [ 1.13444069 -1.0998786 -0.1713109 ]]
    **b2**[[-0.87809283] [ 0.04055394] [ 0.58207317]]
    **v["dW1"]**[[-0.11006192 0.11447237 0.09015907] [ 0.05024943 0.09008559 -0.06837279]]
    **v["db1"]**[[-0.01228902] [-0.09357694]]
    **v["dW2"]**[[-0.02678881 0.05303555 -0.06916608] [-0.03967535 -0.06871727 -0.08452056] [-0.06712461 -0.00126646 -0.11173103]]
    **v["db2"]**[[ 0.02344157] [ 0.16598022] [ 0.07420442]]

    Note?that:

    • The velocity is initialized with zeros. So the algorithm will take a few iterations to "build up" velocity and start to take bigger steps.
    • If?β=0β=0, then this just becomes standard gradient descent without momentum.

    How do you choose?ββ?

    • The larger the momentum?ββ?is, the smoother the update because the more we take the past gradients into account. But if?ββ?is too big, it could also smooth out the updates too much.
    • Common values for?ββ?range from 0.8 to 0.999. If you don't feel inclined to tune this,?β=0.9β=0.9?is often a reasonable default.
    • Tuning the optimal?ββ?for your model might need trying several values to see what works best in term of reducing the value of the cost function?JJ.

    What you should remember:

    • Momentum takes past gradients into account to smooth out the steps of gradient descent. It can be applied with batch gradient descent, mini-batch gradient descent or stochastic gradient descent.
    • You have to tune a momentum hyperparameter?ββ?and a learning rate?αα.

    4 - Adam

    Adam is one of the most effective optimization algorithms for training neural networks. It combines ideas from RMSProp (described in lecture) and Momentum.

    How does Adam work?

  • It calculates an exponentially weighted average of past gradients, and stores it in variables?vv?(before bias correction) and?vcorrectedvcorrected?(with bias correction).
  • It calculates an exponentially weighted average of the squares of the past gradients, and stores it in variables?ss?(before bias correction) and?scorrectedscorrected(with bias correction).
  • It updates parameters in a direction based on combining information from "1" and "2".
  • The update rule is, for?l=1,...,Ll=1,...,L:

    ?????????????????????????????vdW[l]=β1vdW[l]+(1?β1)?J?W[l]vcorrecteddW[l]=vdW[l]1?(β1)tsdW[l]=β2sdW[l]+(1?β2)(?J?W[l])2scorrecteddW[l]=sdW[l]1?(β1)tW[l]=W[l]?αvcorrecteddW[l]scorrecteddW[l]√+ε{vdW[l]=β1vdW[l]+(1?β1)?J?W[l]vdW[l]corrected=vdW[l]1?(β1)tsdW[l]=β2sdW[l]+(1?β2)(?J?W[l])2sdW[l]corrected=sdW[l]1?(β1)tW[l]=W[l]?αvdW[l]correctedsdW[l]corrected+ε

    where:

    • t counts the number of steps taken of Adam
    • L is the number of layers
    • β1β1?and?β2β2?are hyperparameters that control the two exponentially weighted averages.
    • αα?is the learning rate
    • εε?is a very small number to avoid dividing by zero

    As usual, we will store all parameters in the?parameters?dictionary

    Exercise: Initialize the Adam variables?v,sv,s?which keep track of the past information.

    Instruction: The variables?v,sv,s?are python dictionaries that need to be initialized with arrays of zeros. Their keys are the same as for?grads, that is: for?l=1,...,Ll=1,...,L:

    v["dW" + str(l+1)] = ... #(numpy array of zeros with the same shape as parameters["W" + str(l+1)]) v["db" + str(l+1)] = ... #(numpy array of zeros with the same shape as parameters["b" + str(l+1)]) s["dW" + str(l+1)] = ... #(numpy array of zeros with the same shape as parameters["W" + str(l+1)]) s["db" + str(l+1)] = ... #(numpy array of zeros with the same shape as parameters["b" + str(l+1)])

    In?[10]:

    # GRADED FUNCTION: initialize_adamdef initialize_adam(parameters) :"""Initializes v and s as two python dictionaries with:- keys: "dW1", "db1", ..., "dWL", "dbL" - values: numpy arrays of zeros of the same shape as the corresponding gradients/parameters.Arguments:parameters -- python dictionary containing your parameters.parameters["W" + str(l)] = Wlparameters["b" + str(l)] = blReturns: v -- python dictionary that will contain the exponentially weighted average of the gradient.v["dW" + str(l)] = ...v["db" + str(l)] = ...s -- python dictionary that will contain the exponentially weighted average of the squared gradient.s["dW" + str(l)] = ...s["db" + str(l)] = ..."""L = len(parameters) // 2 # number of layers in the neural networksv = {}s = {}# Initialize v, s. Input: "parameters". Outputs: "v, s".for l in range(L):### START CODE HERE ### (approx. 4 lines)v["dW" + str(l+1)] = np.zeros((parameters["W" + str(l+1)].shape))v["db" + str(l+1)] = np.zeros((parameters["b" + str(l+1)].shape))s["dW" + str(l+1)] = np.zeros((parameters["W" + str(l+1)].shape))s["db" + str(l+1)] = np.zeros((parameters["b" + str(l+1)].shape))### END CODE HERE ###return v, s

    In?[11]:

    parameters = initialize_adam_test_case()v, s = initialize_adam(parameters) print("v[\"dW1\"] = " + str(v["dW1"])) print("v[\"db1\"] = " + str(v["db1"])) print("v[\"dW2\"] = " + str(v["dW2"])) print("v[\"db2\"] = " + str(v["db2"])) print("s[\"dW1\"] = " + str(s["dW1"])) print("s[\"db1\"] = " + str(s["db1"])) print("s[\"dW2\"] = " + str(s["dW2"])) print("s[\"db2\"] = " + str(s["db2"])) v["dW1"] = [[ 0. 0. 0.][ 0. 0. 0.]] v["db1"] = [[ 0.][ 0.]] v["dW2"] = [[ 0. 0. 0.][ 0. 0. 0.][ 0. 0. 0.]] v["db2"] = [[ 0.][ 0.][ 0.]] s["dW1"] = [[ 0. 0. 0.][ 0. 0. 0.]] s["db1"] = [[ 0.][ 0.]] s["dW2"] = [[ 0. 0. 0.][ 0. 0. 0.][ 0. 0. 0.]] s["db2"] = [[ 0.][ 0.][ 0.]]

    Expected Output:

    **v["dW1"]**[[ 0. 0. 0.] [ 0. 0. 0.]]
    **v["db1"]**[[ 0.] [ 0.]]
    **v["dW2"]**[[ 0. 0. 0.] [ 0. 0. 0.] [ 0. 0. 0.]]
    **v["db2"]**[[ 0.] [ 0.] [ 0.]]
    **s["dW1"]**[[ 0. 0. 0.] [ 0. 0. 0.]]
    **s["db1"]**[[ 0.] [ 0.]]
    **s["dW2"]**[[ 0. 0. 0.] [ 0. 0. 0.] [ 0. 0. 0.]]
    **s["db2"]**[[ 0.] [ 0.] [ 0.]]

    Exercise: Now, implement the parameters update with Adam. Recall the general update rule is, for?l=1,...,Ll=1,...,L:

    ?????????????????????????????vW[l]=β1vW[l]+(1?β1)?J?W[l]vcorrectedW[l]=vW[l]1?(β1)tsW[l]=β2sW[l]+(1?β2)(?J?W[l])2scorrectedW[l]=sW[l]1?(β2)tW[l]=W[l]?αvcorrectedW[l]scorrectedW[l]√+ε{vW[l]=β1vW[l]+(1?β1)?J?W[l]vW[l]corrected=vW[l]1?(β1)tsW[l]=β2sW[l]+(1?β2)(?J?W[l])2sW[l]corrected=sW[l]1?(β2)tW[l]=W[l]?αvW[l]correctedsW[l]corrected+ε

    Note?that the iterator?l?starts at 0 in the?for?loop while the first parameters are?W[1]W[1]?and?b[1]b[1]. You need to shift?l?to?l+1?when coding.

    In?[15]:

    # GRADED FUNCTION: update_parameters_with_adamdef update_parameters_with_adam(parameters, grads, v, s, t, learning_rate = 0.01,beta1 = 0.9, beta2 = 0.999, epsilon = 1e-8):"""Update parameters using AdamArguments:parameters -- python dictionary containing your parameters:parameters['W' + str(l)] = Wlparameters['b' + str(l)] = blgrads -- python dictionary containing your gradients for each parameters:grads['dW' + str(l)] = dWlgrads['db' + str(l)] = dblv -- Adam variable, moving average of the first gradient, python dictionarys -- Adam variable, moving average of the squared gradient, python dictionarylearning_rate -- the learning rate, scalar.beta1 -- Exponential decay hyperparameter for the first moment estimates beta2 -- Exponential decay hyperparameter for the second moment estimates epsilon -- hyperparameter preventing division by zero in Adam updatesReturns:parameters -- python dictionary containing your updated parameters v -- Adam variable, moving average of the first gradient, python dictionarys -- Adam variable, moving average of the squared gradient, python dictionary"""L = len(parameters) // 2 # number of layers in the neural networksv_corrected = {} # Initializing first moment estimate, python dictionarys_corrected = {} # Initializing second moment estimate, python dictionary# Perform Adam update on all parametersfor l in range(L):# Moving average of the gradients. Inputs: "v, grads, beta1". Output: "v".### START CODE HERE ### (approx. 2 lines)v["dW" + str(l+1)] = beta1 * v["dW" + str(l+1)] + (1-beta1) * grads['dW' + str(l+1)]v["db" + str(l+1)] = beta1 * v["db" + str(l+1)] + (1-beta1) * grads['db' + str(l+1)]### END CODE HERE #### Compute bias-corrected first moment estimate. Inputs: "v, beta1, t". Output: "v_corrected".### START CODE HERE ### (approx. 2 lines)v_corrected["dW" + str(l+1)] = v["dW" + str(l+1)] / (1 - beta1**t)v_corrected["db" + str(l+1)] = v["db" + str(l+1)] / (1 - beta1**t) # v_corrected["dW" + str(l+1)] = v["dW" + str(l+1)] / (1 - np.exp(beta1, l)) # v_corrected["db" + str(l+1)] = v["db" + str(l+1)] / (1 - np.exp(beta1, l))### END CODE HERE #### Moving average of the squared gradients. Inputs: "s, grads, beta2". Output: "s".### START CODE HERE ### (approx. 2 lines) # s["dW" + str(l+1)] = beta2 * s["dW" + str(l+1)] + (1-beta2) * grads['dW' + str(l+1)] * grads['dW' + str(l+1)] # s["db" + str(l+1)] = beta2 * s["db" + str(l+1)] + (1-beta2) * grads['db' + str(l+1)] * grads['db' + str(l+1)]s["dW" + str(l+1)] = beta2 * s["dW" + str(l+1)] + (1 - beta2)*np.power(grads['dW' + str(l+1)],2)s["db" + str(l+1)] = beta2 * s["db" + str(l+1)] + (1 - beta2)*np.power(grads['db' + str(l+1)],2)### END CODE HERE #### Compute bias-corrected second raw moment estimate. Inputs: "s, beta2, t". Output: "s_corrected".### START CODE HERE ### (approx. 2 lines)s_corrected["dW" + str(l+1)] = s["dW" + str(l+1)] / (1 - beta2**2)s_corrected["db" + str(l+1)] = s["db" + str(l+1)] / (1 - beta2**2)### END CODE HERE #### Update parameters. Inputs: "parameters, learning_rate, v_corrected, s_corrected, epsilon". Output: "parameters".### START CODE HERE ### (approx. 2 lines)parameters["W" + str(l+1)] = parameters["W" + str(l+1)] - learning_rate*v_corrected["dW" + str(l+1)]/(np.power(s_corrected["dW" + str(l+1)],0.5) + epsilon)parameters["b" + str(l+1)] = parameters["b" + str(l+1)] - learning_rate*v_corrected["db" + str(l+1)]/(np.power(s_corrected["db" + str(l+1)],0.5) + epsilon)### END CODE HERE ###return parameters, v, s

    In?[16]:

    parameters, grads, v, s = update_parameters_with_adam_test_case() parameters, v, s = update_parameters_with_adam(parameters, grads, v, s, t = 2)print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"])) print("v[\"dW1\"] = " + str(v["dW1"])) print("v[\"db1\"] = " + str(v["db1"])) print("v[\"dW2\"] = " + str(v["dW2"])) print("v[\"db2\"] = " + str(v["db2"])) print("s[\"dW1\"] = " + str(s["dW1"])) print("s[\"db1\"] = " + str(s["db1"])) print("s[\"dW2\"] = " + str(s["dW2"])) print("s[\"db2\"] = " + str(s["db2"])) W1 = [[ 1.63178673 -0.61919778 -0.53561312][-1.08040999 0.85796626 -2.29409733]] b1 = [[ 1.75225313][-0.75376553]] W2 = [[ 0.32648046 -0.25681174 1.46954931][-2.05269934 -0.31497584 -0.37661299][ 1.14121081 -1.09244991 -0.16498684]] b2 = [[-0.88529979][ 0.03477238][ 0.57537385]] v["dW1"] = [[-0.11006192 0.11447237 0.09015907][ 0.05024943 0.09008559 -0.06837279]] v["db1"] = [[-0.01228902][-0.09357694]] v["dW2"] = [[-0.02678881 0.05303555 -0.06916608][-0.03967535 -0.06871727 -0.08452056][-0.06712461 -0.00126646 -0.11173103]] v["db2"] = [[ 0.02344157][ 0.16598022][ 0.07420442]] s["dW1"] = [[ 0.00121136 0.00131039 0.00081287][ 0.0002525 0.00081154 0.00046748]] s["db1"] = [[ 1.51020075e-05][ 8.75664434e-04]] s["dW2"] = [[ 7.17640232e-05 2.81276921e-04 4.78394595e-04][ 1.57413361e-04 4.72206320e-04 7.14372576e-04][ 4.50571368e-04 1.60392066e-07 1.24838242e-03]] s["db2"] = [[ 5.49507194e-05][ 2.75494327e-03][ 5.50629536e-04]]

    Expected Output:

    **W1**[[ 1.63178673 -0.61919778 -0.53561312] [-1.08040999 0.85796626 -2.29409733]]
    **b1**[[ 1.75225313] [-0.75376553]]
    **W2**[[ 0.32648046 -0.25681174 1.46954931] [-2.05269934 -0.31497584 -0.37661299] [ 1.14121081 -1.09245036 -0.16498684]]
    **b2**[[-0.88529978] [ 0.03477238] [ 0.57537385]]
    **v["dW1"]**[[-0.11006192 0.11447237 0.09015907] [ 0.05024943 0.09008559 -0.06837279]]
    **v["db1"]**[[-0.01228902] [-0.09357694]]
    **v["dW2"]**[[-0.02678881 0.05303555 -0.06916608] [-0.03967535 -0.06871727 -0.08452056] [-0.06712461 -0.00126646 -0.11173103]]
    **v["db2"]**[[ 0.02344157] [ 0.16598022] [ 0.07420442]]
    **s["dW1"]**[[ 0.00121136 0.00131039 0.00081287] [ 0.0002525 0.00081154 0.00046748]]
    **s["db1"]**[[ 1.51020075e-05] [ 8.75664434e-04]]
    **s["dW2"]**[[ 7.17640232e-05 2.81276921e-04 4.78394595e-04] [ 1.57413361e-04 4.72206320e-04 7.14372576e-04] [ 4.50571368e-04 1.60392066e-07 1.24838242e-03]]
    **s["db2"]**[[ 5.49507194e-05] [ 2.75494327e-03] [ 5.50629536e-04]]

    You now have three working optimization algorithms (mini-batch gradient descent, Momentum, Adam). Let's implement a model with each of these optimizers and observe the difference.

    5 - Model with different optimization algorithms

    Lets use the following "moons" dataset to test the different optimization methods. (The dataset is named "moons" because the data from each of the two classes looks a bit like a crescent-shaped moon.)

    In?[17]:

    train_X, train_Y = load_dataset()

    We have already implemented a 3-layer neural network. You will train it with:

    • Mini-batch?Gradient Descent: it will call your function:
      • update_parameters_with_gd()
    • Mini-batch?Momentum: it will call your functions:
      • initialize_velocity()?and?update_parameters_with_momentum()
    • Mini-batch?Adam: it will call your functions:
      • initialize_adam()?and?update_parameters_with_adam()

    In?[18]:

    def model(X, Y, layers_dims, optimizer, learning_rate = 0.0007, mini_batch_size = 64, beta = 0.9,beta1 = 0.9, beta2 = 0.999, epsilon = 1e-8, num_epochs = 10000, print_cost = True):"""3-layer neural network model which can be run in different optimizer modes.Arguments:X -- input data, of shape (2, number of examples)Y -- true "label" vector (1 for blue dot / 0 for red dot), of shape (1, number of examples)layers_dims -- python list, containing the size of each layerlearning_rate -- the learning rate, scalar.mini_batch_size -- the size of a mini batchbeta -- Momentum hyperparameterbeta1 -- Exponential decay hyperparameter for the past gradients estimates beta2 -- Exponential decay hyperparameter for the past squared gradients estimates epsilon -- hyperparameter preventing division by zero in Adam updatesnum_epochs -- number of epochsprint_cost -- True to print the cost every 1000 epochsReturns:parameters -- python dictionary containing your updated parameters """L = len(layers_dims) # number of layers in the neural networkscosts = [] # to keep track of the costt = 0 # initializing the counter required for Adam updateseed = 10 # For grading purposes, so that your "random" minibatches are the same as ours# Initialize parametersparameters = initialize_parameters(layers_dims)# Initialize the optimizerif optimizer == "gd":pass # no initialization required for gradient descentelif optimizer == "momentum":v = initialize_velocity(parameters)elif optimizer == "adam":v, s = initialize_adam(parameters)# Optimization loopfor i in range(num_epochs):# Define the random minibatches. We increment the seed to reshuffle differently the dataset after each epochseed = seed + 1minibatches = random_mini_batches(X, Y, mini_batch_size, seed)for minibatch in minibatches:# Select a minibatch(minibatch_X, minibatch_Y) = minibatch# Forward propagationa3, caches = forward_propagation(minibatch_X, parameters)# Compute costcost = compute_cost(a3, minibatch_Y)# Backward propagationgrads = backward_propagation(minibatch_X, minibatch_Y, caches)# Update parametersif optimizer == "gd":parameters = update_parameters_with_gd(parameters, grads, learning_rate)elif optimizer == "momentum":parameters, v = update_parameters_with_momentum(parameters, grads, v, beta, learning_rate)elif optimizer == "adam":t = t + 1 # Adam counterparameters, v, s = update_parameters_with_adam(parameters, grads, v, s,t, learning_rate, beta1, beta2, epsilon)# Print the cost every 1000 epochif print_cost and i % 1000 == 0:print ("Cost after epoch %i: %f" %(i, cost))if print_cost and i % 100 == 0:costs.append(cost)# plot the costplt.plot(costs)plt.ylabel('cost')plt.xlabel('epochs (per 100)')plt.title("Learning rate = " + str(learning_rate))plt.show()return parameters

    You will now run this 3 layer neural network with each of the 3 optimization methods.

    5.1 - Mini-batch Gradient descent

    Run the following code to see how the model does with mini-batch gradient descent.

    In?[19]:

    # train 3-layer model layers_dims = [train_X.shape[0], 5, 2, 1] parameters = model(train_X, train_Y, layers_dims, optimizer = "gd")# Predict predictions = predict(train_X, train_Y, parameters)# Plot decision boundary plt.title("Model with Gradient Descent optimization") axes = plt.gca() axes.set_xlim([-1.5,2.5]) axes.set_ylim([-1,1.5]) plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y) Cost after epoch 0: 0.690736 Cost after epoch 1000: 0.685273 Cost after epoch 2000: 0.647072 Cost after epoch 3000: 0.619525 Cost after epoch 4000: 0.576584 Cost after epoch 5000: 0.607243 Cost after epoch 6000: 0.529403 Cost after epoch 7000: 0.460768 Cost after epoch 8000: 0.465586 Cost after epoch 9000: 0.464518

    Accuracy: 0.796666666667

    5.2 - Mini-batch gradient descent with momentum

    Run the following code to see how the model does with momentum. Because this example is relatively simple, the gains from using momemtum are small; but for more complex problems you might see bigger gains.

    In?[20]:

    # train 3-layer model layers_dims = [train_X.shape[0], 5, 2, 1] parameters = model(train_X, train_Y, layers_dims, beta = 0.9, optimizer = "momentum")# Predict predictions = predict(train_X, train_Y, parameters)# Plot decision boundary plt.title("Model with Momentum optimization") axes = plt.gca() axes.set_xlim([-1.5,2.5]) axes.set_ylim([-1,1.5]) plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y) Cost after epoch 0: 0.690741 Cost after epoch 1000: 0.685341 Cost after epoch 2000: 0.647145 Cost after epoch 3000: 0.619594 Cost after epoch 4000: 0.576665 Cost after epoch 5000: 0.607324 Cost after epoch 6000: 0.529476 Cost after epoch 7000: 0.460936 Cost after epoch 8000: 0.465780 Cost after epoch 9000: 0.464740

    Accuracy: 0.796666666667

    5.3 - Mini-batch with Adam mode

    Run the following code to see how the model does with Adam.

    In?[21]:

    # train 3-layer model layers_dims = [train_X.shape[0], 5, 2, 1] parameters = model(train_X, train_Y, layers_dims, optimizer = "adam")# Predict predictions = predict(train_X, train_Y, parameters)# Plot decision boundary plt.title("Model with Adam optimization") axes = plt.gca() axes.set_xlim([-1.5,2.5]) axes.set_ylim([-1,1.5]) plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y) Cost after epoch 0: 0.690563 Cost after epoch 1000: 0.651362 Cost after epoch 2000: 0.623838 Cost after epoch 3000: 0.584447 Cost after epoch 4000: 0.539826 Cost after epoch 5000: 0.555550 Cost after epoch 6000: 0.440262 Cost after epoch 7000: 0.329676 Cost after epoch 8000: 0.322698 Cost after epoch 9000: 0.356201

    Accuracy: 0.92

    5.4 - Summary

    **optimization method****accuracy****cost shape**
    Gradient descent79.7%oscillations
    Momentum79.7%oscillations
    Adam94%smoother

    Momentum usually helps, but given the small learning rate and the simplistic dataset, its impact is almost negligeable. Also, the huge oscillations you see in the cost come from the fact that some minibatches are more difficult thans others for the optimization algorithm.

    Adam on the other hand, clearly outperforms mini-batch gradient descent and Momentum. If you run the model for more epochs on this simple dataset, all three methods will lead to very good results. However, you've seen that Adam converges a lot faster.

    Some advantages of Adam include:

    • Relatively low memory requirements (though higher than gradient descent and gradient descent with momentum)
    • Usually works well even with little tuning of hyperparameters (except?αα)

    References:

    • Adam paper:?https://arxiv.org/pdf/1412.6980.pdf

    轉(zhuǎn)載于:https://my.oschina.net/sizhe/blog/1815653

    總結(jié)

    以上是生活随笔為你收集整理的deep learning 作業 2.2的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。

    如果覺得生活随笔網(wǎng)站內(nèi)容還不錯(cuò),歡迎將生活随笔推薦給好友。

    主站蜘蛛池模板: 啪啪.com | 国产图片一区 | 911看片| 精品少妇3p | 亚洲色图激情 | ass亚洲尤物裸体pics | 亚洲欧洲成人精品久久一码二码 | 综合在线一区 | 张津瑜国内精品www在线 | 欧美成人一区在线观看 | 亚洲精品黄色片 | 日韩免费专区 | 特黄特色大片免费视频大全 | 国产一二三区免费视频 | 亚洲成人自拍视频 | 狼人精品一区二区三区在线 | 91导航| 黄色网久久 | 国产网站一区 | 夜夜操网址| 干操网| 香蕉网站在线观看 | www.色播.com| 91丨国产丨白丝 | 日本精品中文字幕 | 蜜臀久久99精品久久久久久宅男 | 人妻精品一区二区在线 | 国产91精| 国产性猛交普通话对白 | 丰满孕妇性春猛交xx大陆 | 亚洲香蕉一区 | free国产hd露脸性开放 | 成人污污视频在线观看 | av影视天堂 | 国产一区二区久久精品 | 大吊一区二区三区 | 亚洲夜色 | 91av一区二区三区 | 久艹视频在线观看 | 国产精品19p| 香蕉视频成人在线 | 亚洲操操操 | 国产精品久久777777毛茸茸 | 蜜桃综合 | 欧美人与性禽动交精品 | 国产精品老牛影院99av | 丁香婷婷六月天 | 国色天香一区二区 | 日韩欧美视频一区二区三区 | 免费吸乳羞羞网站视频 | 日本大乳美女 | 午夜视频一区二区三区 | 精品91久久久 | 国产一区二区在线不卡 | 成人首页| jzzjzzjzz亚洲成熟少妇 | 91玉足脚交白嫩脚丫 | 亚洲成人二区 | 亚洲一区二区三区午夜 | 日韩精品一区二区三区不卡在线 | 国产无限制自拍 | 黑人操中国女人视频 | 久久久久久久久99 | 中文一区二区 | 四虎影城库 | 青娱乐国产 | 久久av资源 | 亚洲女人网 | 天天操夜夜添 | 欧美日韩一区二区在线播放 | 被各种性器调教到哭vk | 国产不卡毛片 | 亚洲黄色在线观看 | 久久久久久久久久久久 | 男女啪啪免费 | 告诉我真相俄剧在线观看 | 日韩国产一区 | 88国产精品 | 国产精品成人va在线观看 | 日本天堂一区 | 欧美日韩亚洲免费 | 女人十八岁毛片 | 国产91片| 1024国产在线 | 美日韩一级 | 国产一区二区三区欧美 | 九九这里只有精品视频 | 中文字幕不卡视频 | 日本午夜一级 | 天天爽天天搞 | 亚洲在线国产 | 国产一区二区三区久久久 | 日韩久久电影 | av无码久久久久久不卡网站 | 40到50岁中老年妇女毛片 | 人妻av中文系列 | 二三区视频 | 熟妇人妻va精品中文字幕 | 理论片91|