日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問(wèn) 生活随笔!

生活随笔

當(dāng)前位置: 首頁(yè) > 编程资源 > 编程问答 >内容正文

编程问答

线性代数学习笔记(几何版)

發(fā)布時(shí)間:2025/4/16 编程问答 39 豆豆
生活随笔 收集整理的這篇文章主要介紹了 线性代数学习笔记(几何版) 小編覺(jué)得挺不錯(cuò)的,現(xiàn)在分享給大家,幫大家做個(gè)參考.

本博客僅用來(lái)記錄重要概念。

線性代數(shù)學(xué)習(xí)請(qǐng)移步https://www.bilibili.com/video/av6731067

不得不說(shuō),這位up主講的是真心好,尤其是點(diǎn)積叉積那一部分,直接刷新世界觀QWQ。

?

空間內(nèi)的一組基指的是:張成該空間的一個(gè)線性無(wú)關(guān)向量的集合

?

張成

所有可以表示為給定向量線性組合的向量的集合被稱為給定向量張成的空間

張成在這里應(yīng)該是動(dòng)詞。

?

?

在三維空間中,兩個(gè)向量張成出的空間應(yīng)該是某個(gè)過(guò)原點(diǎn)的平面

?

線性相關(guān)

一組向量中至少有一個(gè)是多余的,沒(méi)有對(duì)張成空間做出任何貢獻(xiàn)

你有多個(gè)向量, 并且可以移除其中的一個(gè)而不減小張成的空間

這種情況發(fā)生時(shí),我們稱他們是“線性相關(guān)”的

?

如果所有的向量都給張成的空間增加了新的維度,他們就被稱為“線性無(wú)關(guān)”

?

?

矩陣

這介紹怎么這么鬼畜。。

?

對(duì)空間的一種特定變換

?

線性變換

接收一個(gè)向量,并輸出一個(gè)向量的變換

線性的直觀含義:

1.直線在變換后仍然為直線,不能有所彎曲

2.原點(diǎn)必須保持固定(如果原點(diǎn)不固定,它可能為“仿射變換”)

?

注意:線性變換“保持網(wǎng)格線平行且等距分布”—》如果變換前的向量是$i$和$j$的線性組合,那么變換后也是$i$和$j$的線性組合

?

矩陣乘法

復(fù)合矩陣

乘積需要從右往左計(jì)算

我對(duì)矩陣乘法的理解:

首先把$M_1$的$[e,g]$看成一個(gè)向量,$[f,h]$看成一個(gè)向量

左乘$M_2$實(shí)際是兩個(gè)向量分別與$M_2$相乘

$M_2$可以看做將基底進(jìn)行變換的矩陣

根據(jù)線性變換的性質(zhì),

$[e,g]$所代表的向量為$ei + gj$,此時(shí)$i$變?yōu)?(a,c)$,$j$變?yōu)?(b, d)$

然后帶入相乘就得到了最終答案

矩陣乘法的性質(zhì)

不滿足交換律

對(duì)于變換$A,B$,先應(yīng)用$A$再應(yīng)用$b$

和線應(yīng)用$B$,再應(yīng)用$A$,得到的結(jié)果是不同的

滿足結(jié)合律

$(AB)C$相當(dāng)于先應(yīng)用$C$變換,再應(yīng)用$B$、$A$變換

$A(BC)$相當(dāng)于先應(yīng)用$C$、$B$變換,再應(yīng)用$A$變換,

他們的運(yùn)算順序是相同的

三維空間內(nèi)的線性變換

本質(zhì)與二維是相同的

?

行列式

二維空間

線性變換改變面積的比例被稱為這個(gè)變換的行列式

當(dāng)空間定向改變的情況發(fā)生時(shí)行列式為負(fù)

?

三維空間

三維空間下行列式的值為平行六面體的體積

?

判斷正負(fù)的方法:

右手定則:讓食指指向$i$,中指指向$j$,拇指指向$k$,如果變換之后仍然能這么做,則為正;若只能用食指這么做,則為負(fù)

?

?

行列式的計(jì)算

二維

證明:

?

三維:

?

性質(zhì)

?

逆矩陣

?

矩陣的秩

秩:變換后空間的維數(shù)/列空間的維數(shù)

滿秩:秩與列數(shù)相同

?

列空間

直線/平面/三維空間等,所有可能的變換結(jié)果的集合,被稱為矩陣的“列空間”

?

零空間

零空間:變換后落在原點(diǎn)的向量的集合

點(diǎn)積

定義:

代數(shù):對(duì)于兩個(gè)維度相同的矩陣,其點(diǎn)積為將相應(yīng)坐標(biāo)配對(duì),求出每一對(duì)坐標(biāo)的乘積再相加

幾何:兩個(gè)向量的點(diǎn)積為一個(gè)向量在另一個(gè)向量上正交投影的長(zhǎng)度乘以另一個(gè)向量的長(zhǎng)度(好繞。。)

若兩向量反向,則乘積為負(fù)

兩者的關(guān)系:

這一部分聽(tīng)傻了,感覺(jué)都是神仙推導(dǎo)。太強(qiáng)了orz

叉積

定義

視頻中并沒(méi)有明確的給出叉積的定義

大概就是算出兩個(gè)向量的行列式來(lái)構(gòu)成第三個(gè)向量

正負(fù)

對(duì)于$i \times j$,若$i$在$j$右側(cè),則叉積為正,否則叉積為負(fù)

計(jì)算

基變換

感覺(jué)前面講過(guò)。。

特征向量與特征值

定義

特征向量

在基向量變換后張成出的空間與基向量不變時(shí)張成出的空間相同的向量?

特征值

特征向量在變換后被縮放/拉伸的比例

?

總結(jié)

以上是生活随笔為你收集整理的线性代数学习笔记(几何版)的全部?jī)?nèi)容,希望文章能夠幫你解決所遇到的問(wèn)題。

如果覺(jué)得生活随笔網(wǎng)站內(nèi)容還不錯(cuò),歡迎將生活随笔推薦給好友。

主站蜘蛛池模板: 欧美日韩亚洲精品内裤 | 五月丁香花 | 一区不卡视频 | 91视频黄版| 在线观看日批 | 少妇又紧又色又爽又刺激 | 成人久久久精品乱码一区二区三区 | 国产精品久久久久久无人区 | 亚洲图片欧美在线 | 污视频网站在线看 | 国产婷婷一区二区 | 久久精品6| 久久午夜无码鲁丝片午夜精品 | 免费国产一区二区 | 美女久久久久久 | 公妇借种乱htp109cc | 本道久久| 99精品免费观看 | 亚洲精品成a人在线观看 | 国产91丝袜在线播放九色 | 中文字幕久久久久久久 | jjzz黄色片| 俄罗斯嫩小性bbwbbw | 亚洲网在线观看 | 全部免费毛片在线播放高潮 | 榴莲视频黄色 | 99在线视频免费 | 日本老肥婆bbbwbbbwzr | 亚州男人的天堂 | 干爹你真棒插曲免费 | 毛片免费一区二区三区 | 国产精品久久久毛片 | 男人的天堂av女优 | 91精品国产综合久久福利软件 | 捆绑调教sm束缚网站 | 五月天久久综合 | ,午夜性刺激免费看视频 | 曰本女人与公拘交酡 | 国产牛牛 | 两个人做羞羞的视频 | 天天躁夜夜躁av天天爽 | 蜜桃av免费在线观看 | 狠狠躁夜夜躁xxxxaaaa | 日韩一三区| 日本视频一区二区 | 免费毛片av| 色爱色| 国产激情视频 | 国内精品国产三级国产aⅴ久 | 欧美色就是色 | 韩国无码一区二区三区精品 | 久久精品一区二区在线观看 | 日本一区二区在线播放 | 亚洲综合日韩 | 精品一区二区亚洲 | 欧美极品视频在线观看 | 人人人人爽 | 超碰超碰97 | 91涩| 岛国av噜噜噜久久久狠狠av | 日本网站在线免费观看 | 国产精品成人在线观看 | 免费看a毛片 | 爱爱动态图 | 91福利社在线观看 | 日韩高清在线播放 | 看了让人下面流水的视频 | 国产精品丝袜视频无码一区69 | 亚洲人久久 | 亚洲在线免费看 | 99自拍偷拍视频 | 国产精品宾馆在线精品酒店 | 杨贵妃颤抖双乳呻吟求欢小说 | 91男女视频 | 大陆极品少妇内射aaaaa | 99久久精品国产一区二区三区 | 91在线一区| 精品国产系列 | 国内精品视频在线播放 | 涩涩成人网 | 国产1区二区 | 丰满熟妇人妻av无码区 | 国产成人无码www免费视频播放 | 欧洲一级视频 | 日韩中文字幕在线视频 | 免费的黄色的网站 | 美女网站免费观看 | 孕妇爱爱视频 | 99网站| 国产尤物视频在线 | 久草福利资源在线观看 | 国产精品不卡在线 | 国产亚洲制服 | 欧美乱大交xxxxx春色视频 | 麻豆视频黄色 | 一起艹在线观看 | sao虎视频在线精品永久 | 日本成人片在线 | 国产精品h |