日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當(dāng)前位置: 首頁 > 编程语言 > python >内容正文

python

python 并行计算 opencv_opencv-python计算影像

發(fā)布時(shí)間:2025/4/16 python 31 豆豆
生活随笔 收集整理的這篇文章主要介紹了 python 并行计算 opencv_opencv-python计算影像 小編覺得挺不錯(cuò)的,現(xiàn)在分享給大家,幫大家做個(gè)參考.

圖片去燥

主要函數(shù)

cv.fastNlMeansDenoising()對(duì)灰度圖像去燥

cv.fastNlMeansDenoisingColored() 對(duì)彩色圖像去燥

cv.fastNlMeansDenoisingMulti()對(duì)灰度圖片序列去燥

cv.fastNlMeansDenoisingColoredMulti()對(duì)彩色圖片序列去燥

例子cv.fastNlMeansDenoisingColored()

import numpy as np

import cv2 as cv

from matplotlib import pyplot as plt

img = cv.imread('die.png')

dst = cv.fastNlMeansDenoisingColored(img,None,10,10,7,21)

plt.subplot(121),plt.imshow(img)

plt.subplot(122),plt.imshow(dst)

plt.show()

例子 cv.fastNlMeansDenoisingMulti()

import numpy as np

import cv2 as cv

from matplotlib import pyplot as plt

cap = cv.VideoCapture('vtest.avi')

# create a list of first 5 frames

img = [cap.read()[1] for i in xrange(5)]

# convert all to grayscale

gray = [cv.cvtColor(i, cv.COLOR_BGR2GRAY) for i in img]

# convert all to float64

gray = [np.float64(i) for i in gray]

# create a noise of variance 25

noise = np.random.randn(*gray[1].shape)*10

# Add this noise to images

noisy = [i+noise for i in gray]

# Convert back to uint8

noisy = [np.uint8(np.clip(i,0,255)) for i in noisy]

# Denoise 3rd frame considering all the 5 frames

dst = cv.fastNlMeansDenoisingMulti(noisy, 2, 5, None, 4, 7, 35)

plt.subplot(131),plt.imshow(gray[2],'gray')

plt.subplot(132),plt.imshow(noisy[2],'gray')

plt.subplot(133),plt.imshow(dst,'gray')

plt.show()

https://docs.opencv.org/3.4/d5/d69/tutorial_py_non_local_means.html

圖片修補(bǔ)

首先需要?jiǎng)?chuàng)建一個(gè)保護(hù)罩

import numpy as np

import cv2 as cv

img = cv.imread('messi_2.jpg')

mask = cv.imread('mask2.png',0)

dst = cv.inpaint(img,mask,3,cv.INPAINT_TELEA)

cv.imshow('dst',dst)

cv.waitKey(0)

cv.destroyAllWindows()

https://docs.opencv.org/3.4/df/d3d/tutorial_py_inpainting.html

圖片高動(dòng)態(tài)范圍成像

Goal

Learn how to generate and display HDR image from an exposure sequence.

Use exposure fusion to merge an exposure sequence.

1加載不同曝光的圖片到列表中

import cv2 as cv

import numpy as np

# Loading exposure images into a list

img_fn = ["img0.jpg", "img1.jpg", "img2.jpg", "img3.jpg"]

img_list = [cv.imread(fn) for fn in img_fn]

exposure_times = np.array([15.0, 2.5, 0.25, 0.0333], dtype=np.float32)

2合并圖片成HDR

# Merge exposures to HDR image

merge_debevec = cv.createMergeDebevec()

hdr_debevec = merge_debevec.process(img_list, times=exposure_times.copy())

merge_robertson = cv.createMergeRobertson()

hdr_robertson = merge_robertson.process(img_list, times=exposure_times.copy())

3對(duì)合并的圖片調(diào)整

# Tonemap HDR image

tonemap1 = cv.createTonemap(gamma=2.2)

res_debevec = tonemap1.process(hdr_debevec.copy())

4使用Mertens fusion合并圖片

# Exposure fusion using Mertens

merge_mertens = cv.createMergeMertens()

res_mertens = merge_mertens.process(img_list)

5轉(zhuǎn)換成8位格式的圖片并保存

# Convert datatype to 8-bit and save

res_debevec_8bit = np.clip(res_debevec*255, 0, 255).astype('uint8')

res_robertson_8bit = np.clip(res_robertson*255, 0, 255).astype('uint8')

res_mertens_8bit = np.clip(res_mertens*255, 0, 255).astype('uint8')

cv.imwrite("ldr_debevec.jpg", res_debevec_8bit)

cv.imwrite("ldr_robertson.jpg", res_robertson_8bit)

cv.imwrite("fusion_mertens.jpg", res_mertens_8bit)

對(duì)攝像頭的曲線評(píng)估

# Estimate camera response function (CRF)

cal_debevec = cv.createCalibrateDebevec()

crf_debevec = cal_debevec.process(img_list, times=exposure_times)

hdr_debevec = merge_debevec.process(img_list, times=exposure_times.copy(), response=crf_debevec.copy())

cal_robertson = cv.createCalibrateRobertson()

crf_robertson = cal_robertson.process(img_list, times=exposure_times)

hdr_robertson = merge_robertson.process(img_list, times=exposure_times.copy(), response=crf_robertson.copy())

https://docs.opencv.org/3.4/d2/df0/tutorial_py_hdr.html

總結(jié)

以上是生活随笔為你收集整理的python 并行计算 opencv_opencv-python计算影像的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網(wǎng)站內(nèi)容還不錯(cuò),歡迎將生活随笔推薦給好友。