日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

Deep Belief Network简介

發布時間:2025/6/17 编程问答 35 豆豆
生活随笔 收集整理的這篇文章主要介紹了 Deep Belief Network简介 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

1. 多層神經網絡存在的問題 ?

? 常用的神經網絡模型, 一般只包含輸入層, 輸出層和一個隱藏層:

? ? ? ?

? 理論上來說, 隱藏層越多, 模型的表達能力應該越強。但是, 當隱藏層數多于一層時, 如果我們使用隨機值來初始化權重, 使用梯度下降來優化參數就會出現許多問題[1]:

  • 如果初始權重值設置的過大, 則訓練過程中權重值會落入局部最小值(而不是全局最小值)。
  • 如果初始的權重值設置的過小, 則在使用BP調整參數時, 當誤差傳遞到最前面幾層時, 梯度值會很小, 從而使得權重的改變很小, 無法得到最優值。[疑問, 是否可以提高前幾層的learning rate來解決這個問題?]
  • ? 所以, 如果初始的權重值已經比較接近最優解時, 使用梯度下降可以得到一個比較好的結果, Hinton等在2006年提出了一種新的方法[2]來求得這種比較接近最優解的初始權重。

    2. Deep Belief Network

    ? DBN是由Hinton在2006年提出的一種概率生成模型, 由多個限制玻爾茲曼機(RBM)[3]堆棧而成:

    ? 在訓練時, Hinton采用了逐層無監督的方法來學習參數。首先把數據向量x和第一層隱藏層作為一個RBM, 訓練出這個RBM的參數(連接x和h1的權重, x和h1各個節點的偏置等等), 然后固定這個RBM的參數, 把h1視作可見向量, 把h2視作隱藏向量, 訓練第二個RBM, 得到其參數, 然后固定這些參數, 訓練h2和h3構成的RBM, 具體的訓練算法如下:

    ??

    ? 上圖最右邊就是最終訓練得到的生成模型:

    ??

    ? 用公式表示為:

    ??

    3. 利用DBN進行有監督學習

    ? 在使用上述的逐層無監督方法學得節點之間的權重以及節點的偏置之后(亦即初始化), 可以在DBN的最頂層再加一層, 來表示我們希望得到的輸出, 然后計算模型得到的輸出和希望得到的輸出之間的誤差, 利用后向反饋的方法來進一步優化之前設置的初始權重。因為我們已經使用逐層無監督方法來初始化了權重值, 使其比較接近最優值, 解決了之前多層神經網絡訓練時存在的問題, 能夠得到很好的效果。

    ? 參考文獻:

    ? [1]. Reducing the Dimensionality of Data with Neural Networks. G. E. Hinton, R. R. Slakhutdinov. 2006, Science.

    ? [2]. A fast learning algorithm for deep belief nets. G. E. Hinton,?Simon Osindero,?Yee-Whye Teh. 2006, Neural Computation.

    ? [3]. 限制玻爾茲曼機(Restricted Boltzmann Machine, RBM)簡介

    ? [4]. Scholarpedia: Deep Belief Networks

    ? [5].?Learning Deep Architectures for AI.?Yoshua Bengio

    轉載于:https://www.cnblogs.com/kemaswill/p/3266026.html

    總結

    以上是生活随笔為你收集整理的Deep Belief Network简介的全部內容,希望文章能夠幫你解決所遇到的問題。

    如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。

    主站蜘蛛池模板: 2021久久| av综合一区 | 国产在线不卡一区 | 天堂久久爱 | 中文字幕第80页 | 亚洲123区 | 依依成人在线视频 | 亚洲精品日产精品乱码不卡 | 国产熟妇一区二区三区四区 | cao国产| 精品99久久 | 可以免费看黄的网站 | 99久久久无码国产精品免费麻豆 | 国产高清在线 | 亚洲图片自拍偷拍区 | 日韩欧美色 | 国产精品一区二区免费看 | 日本少妇吞精囗交 | www.夜夜操 | 亚洲人成在线免费观看 | 女仆乖h调教跪趴1v1 | 国产噜噜噜噜久久久久久久久 | 国产91清纯白嫩初高中在线观看 | 激情午夜视频 | 亚洲看看| 国产精品久久在线 | 香蕉尹人网 | 黄色的网站免费观看 | 一道本一区| 久久精国产 | 日韩资源在线观看 | 白丝女仆被免费网站 | 成年网站在线播放 | 蜜臀视频在线播放 | 色吊妞 | 国产一区二区三区视频免费观看 | 欧美亚洲综合视频 | brazzers欧美大波霸 | 女人天堂av | 国产亚洲精品久久久久久青梅 | 色一情一乱一乱一区91av | 国产在线视频二区 | 激情久久五月天 | 波多野结衣黄色网址 | 久久久穴 | 免费在线观看不卡av | 亚洲一区二区精品 | 女人18毛片水真多18精品 | 俄罗斯嫩小性bbwbbw | www.日本在线视频 | 国产成人超碰人人澡人人澡 | 亚洲免费影视 | 国产三级网 | 夜夜春av| 亚洲热热 | 91射射| 国产无遮挡一区二区三区毛片日本 | 91亚洲国产成人精品一区 | 人妻无码久久精品人妻 | av手机免费看 | 少妇2做爰bd在线意大利堕落 | 九九热精品视频在线播放 | 蜜乳av懂色av粉嫩av | 午夜xx| 日韩一级在线视频 | 开心综合网| 一本色道av | 亚洲成人av免费 | 欧美成人精品欧美一级乱 | 欧美大黄视频 | 91视频在线免费 | 手机在线免费看av | 韩国伦理片在线播放 | 免费中文字幕日韩欧美 | 国产精品福利一区二区三区 | 伊人精品国产 | 国产乱乱| 秋霞国产午夜精品免费视频 | av福利网站| 蜜臀av一区二区三区 | 黄色免费网站视频 | 伊人网久久久 | 黄色一级片. | 韩国伦理大片 | 成人免费看片网站 | 国产中文字幕一区二区 | 打屁屁日本xxxxx变态 | 久久久久久久久久福利 | 私人毛片 | 在线97视频 | 中文字幕乱码在线 | 亚洲精选久久 | 中文久久久| 中文字幕人妻一区二区在线视频 | 精品麻豆视频 | 国产精品91久久 | 九九热免费在线视频 | 日韩在线色 | 亚洲黄色小说网 |