日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

tensorflow.reshap(tensor,shape,name)的使用说明

發布時間:2025/7/14 编程问答 38 豆豆
生活随笔 收集整理的這篇文章主要介紹了 tensorflow.reshap(tensor,shape,name)的使用说明 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

tensorflow as tf

tf.reshape(tensor, shape, name=None)?
reshape作用是將tensor變換為指定shape的形式。?
其中shape為一個列表形式,特殊的一點是列表中可以存在-1。-1代表的含義是不用我們自己指定這一維的大小,函數會自動計算(根據已給定的維度,自動推出-1指定的維度),但列表中只能存在一個-1。(當然如果存在多個-1,就是一個存在多解的方程了)

# tensor 't' is [1, 2, 3, 4, 5, 6, 7, 8, 9] # tensor 't' has shape [9] reshape(t, [3, 3]) ==> [[1, 2, 3],[4, 5, 6],[7, 8, 9]]# tensor 't' is [[[1, 1], [2, 2]], # [[3, 3], [4, 4]]] # tensor 't' has shape [2, 2, 2] reshape(t, [2, 4]) ==> [[1, 1, 2, 2],[3, 3, 4, 4]]# tensor 't' is [[[1, 1, 1], # [2, 2, 2]], # [[3, 3, 3], # [4, 4, 4]], # [[5, 5, 5], # [6, 6, 6]]] # tensor 't' has shape [3, 2, 3] # pass '[-1]' to flatten 't' reshape(t, [-1]) ==> [1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6]# -1 can also be used to infer the shape# -1 is inferred to be 9: reshape(t, [2, -1]) ==> [[1, 1, 1, 2, 2, 2, 3, 3, 3],[4, 4, 4, 5, 5, 5, 6, 6, 6]] # -1 is inferred to be 2: reshape(t, [-1, 9]) ==> [[1, 1, 1, 2, 2, 2, 3, 3, 3],[4, 4, 4, 5, 5, 5, 6, 6, 6]] # -1 is inferred to be 3: reshape(t, [ 2, -1, 3]) ==> [[[1, 1, 1],[2, 2, 2],[3, 3, 3]],[[4, 4, 4],[5, 5, 5],[6, 6, 6]]]# tensor 't' is [7] # shape `[]` reshapes to a scalar reshape(t, []) ==> 7

  

轉載于:https://www.cnblogs.com/anhoo/p/9343761.html

總結

以上是生活随笔為你收集整理的tensorflow.reshap(tensor,shape,name)的使用说明的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。