Kmeans
例如要把一組數(shù)據(jù)分成兩個簇:?
?
?
6個數(shù)據(jù)的簇標號分別是:?
?
可視化:?
?
參考:?
http://stat.ethz.ch/R-manual/R-devel/library/stats/html/kmeans.html?
?
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | > dataset = matrix(c(1,2, + 1.2,2, + 8,9, + 0.9,1.8, + 7,10, + 8.8,9.2), nrow=6, byrow=T) > dataset ?????[,1] [,2] [1,]? 1.0? 2.0 [2,]? 1.2? 2.0 [3,]? 8.0? 9.0 [4,]? 0.9? 1.8 [5,]? 7.0 10.0 [6,]? 8.8? 9.2 > kmeans(dataset, 2, iter.max = 20) K-means clustering with 2 clusters of sizes 3, 3 Cluster means: ??????[,1]???? [,2] 1 1.033333 1.933333 2 7.933333 9.400000 Clustering vector: [1] 1 1 2 1 2 2 Within cluster sum of squares by cluster: [1] 0.07333333 2.18666667 ?(between_SS / total_SS =? 98.6 %) Available components: [1] "cluster"????? "centers"????? "totss"??????? "withinss"???? "tot.withinss" "betweenss"?? [7] "size" |
?
| 1 2 3 4 | Cluster means: ??????[,1]???? [,2] 1 1.033333 1.933333 2 7.933333 9.400000 |
?
| 1 2 | Clustering vector: [1] 1 1 2 1 2 2 |
可視化:?
?
| 1 2 | > result = kmeans(dataset, 2, iter.max = 20) > plot(c(dataset[,1]), c(dataset[,2]), col=result$cluster) |
參考:?
http://stat.ethz.ch/R-manual/R-devel/library/stats/html/kmeans.html?
總結(jié)
- 上一篇: 如何生成符合高斯分布的数据集
- 下一篇: 深度学习在自然语言处理研究上的进展