日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問(wèn) 生活随笔!

生活随笔

當(dāng)前位置: 首頁(yè) > 编程资源 > 编程问答 >内容正文

编程问答

Deep Reinforcement Learning 深度增强学习资源

發(fā)布時(shí)間:2025/7/25 编程问答 31 豆豆
生活随笔 收集整理的這篇文章主要介紹了 Deep Reinforcement Learning 深度增强学习资源 小編覺(jué)得挺不錯(cuò)的,現(xiàn)在分享給大家,幫大家做個(gè)參考.

http://blog.csdn.net/songrotek/article/details/50572935

1 學(xué)習(xí)資料

增強(qiáng)學(xué)習(xí)課程 David Silver (有視頻和ppt):

http://www0.cs.ucl.ac.uk/staff/D.Silver/web/Teaching.html

最好的增強(qiáng)學(xué)習(xí)教材:

Reinforcement Learning: An Introduction

https://webdocs.cs.ualberta.ca/~sutton/book/the-book.html

?

深度學(xué)習(xí)課程 (有視頻有ppt有作業(yè))

?

https://www.cs.ox.ac.uk/people/nando.defreitas/machinelearning/

?

深度增強(qiáng)學(xué)習(xí)的講座都是David Silver的:

ICLR 2015 part 1?https://www.youtube.com/watch?v=EX1CIVVkWdE

ICLR 2015 part 2?https://www.youtube.com/watch?v=zXa6UFLQCtg

UAI 2015?https://www.youtube.com/watch?v=qLaDWKd61Ig

RLDM 2015?http://videolectures.net/rldm2015_silver_reinforcement_learning/

?

其他課程:

增強(qiáng)學(xué)習(xí)

Michael Littman:

https://www.udacity.com/course/reinforcement-learning–ud600

?

AI(包含增強(qiáng)學(xué)習(xí),使用Pacman實(shí)驗(yàn))

Pieter Abbeel:

https://www.edx.org/course/artificial-intelligence-uc-berkeleyx-cs188-1x-0#.VKuKQmTF_og

?

Deep reinforcement Learning:

Pieter Abbeel

http://rll.berkeley.edu/deeprlcourse/

?

高級(jí)機(jī)器人技術(shù)(Advanced Robotics):

Pieter Abbeel:

http://www.cs.berkeley.edu/~pabbeel/cs287-fa15/

?

深度學(xué)習(xí)相關(guān)課程:

用于視覺(jué)識(shí)別的卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network for visual network)

http://cs231n.github.io/

?

機(jī)器學(xué)習(xí) Machine Learning

Andrew Ng

https://www.coursera.org/learn/machine-learning/

http://cs229.stanford.edu/

?

神經(jīng)網(wǎng)絡(luò)(Neural Network for Machine Learning)(2012年的)

Hinton:

https://www.coursera.org/course/neuralnets

?

最新機(jī)器人專題課程Penn(2016年開(kāi)課):

https://www.coursera.org/specializations/robotics

?

2 論文資料

https://github.com/junhyukoh/deep-reinforcement-learning-papers

https://github.com/muupan/deep-reinforcement-learning-papers

?

這兩個(gè)人收集的基本涵蓋了當(dāng)前deep reinforcement learning 的論文資料。目前確實(shí)不多。

?

3 大牛情況:

DeepMind:

http://www.deepmind.com/publications.html

?

Pieter Abbeel 團(tuán)隊(duì):

http://www.eecs.berkeley.edu/~pabbeel/

?

Satinder Singh:

http://web.eecs.umich.edu/~baveja/

?

CMU 進(jìn)展:

http://www.cs.cmu.edu/~lerrelp/

?

Prefered Networks: (日本創(chuàng)業(yè)公司,很強(qiáng),某有代碼)

?

4 會(huì)議情況

Deep Reinforcement Learning Workshop NIPS 2015

http://rll.berkeley.edu/deeprlworkshop/



***********************************************************************************************

Deep Reinforcement Learning 深度增強(qiáng)學(xué)習(xí)資源 (持續(xù)更新)

Flood Sung · 3 個(gè)月前

Deep Reinforcement Learning深度增強(qiáng)學(xué)習(xí)可以說(shuō)發(fā)源于2013年DeepMind的Playing Atari with Deep Reinforcement Learning 一文,之后2015年DeepMind 在Nature上發(fā)表了Human Level Control through Deep Reinforcement Learning一文使Deep Reinforcement Learning得到了較廣泛的關(guān)注,在2015年涌現(xiàn)了較多的Deep Reinforcement Learning的成果。而2016年,隨著AlphaGo的出現(xiàn),Deep Reinforcement Learning 將進(jìn)入全面發(fā)展的階段。

Deep Reinforcement Learning面向決策與控制問(wèn)題,而決策與控制很大程度上決定了人工智能的發(fā)展水平。也因此,AlphaGo的出現(xiàn)具有里程碑的意義。Deep Reinforcement Learning研究使用深度神經(jīng)網(wǎng)絡(luò)來(lái)解決決策控制問(wèn)題,是深度學(xué)習(xí)領(lǐng)域最前沿的研究方向之一。

本文主要收集與Deep Reinforcement Learning相關(guān)的各種資料,希望對(duì)有興趣研究的童鞋有所幫助。接下來(lái),本專欄將由我繼續(xù)發(fā)布Deep Reinforcement Learning的相關(guān)文章。

PS:最新的資料會(huì)在資料前方標(biāo)出。

1 學(xué)習(xí)資料

1)增強(qiáng)學(xué)習(xí)相關(guān)課程:

  • David Silver的增強(qiáng)學(xué)習(xí)課程(有視頻和ppt): www0.cs.ucl.ac.uk/staff
  • 最好的增強(qiáng)學(xué)習(xí)教材:Sutton & Barto Book: Reinforcement Learning: AnIntroduction
  • Nando de Freitas的深度學(xué)習(xí)課程 (有視頻有ppt有作業(yè)):Machine Learning
  • Michael Littman的增強(qiáng)學(xué)習(xí)課程:https://www.udacity.com/course/reinforcement-learning–ud600
  • Pieter Abbeel 的AI課程(包含增強(qiáng)學(xué)習(xí),使用Pacman實(shí)驗(yàn)):Artificial Intelligence
  • Pieter Abbeel 的深度增強(qiáng)學(xué)習(xí)課程:CS 294 Deep Reinforcement Learning, Fall 2015
  • Pieter Abbeel 的 高級(jí)機(jī)器人技術(shù)(Advanced Robotics): CS287 Fall 2015
  • 最新機(jī)器人專題課程Penn(2016年開(kāi)課):Specialization

2)深度學(xué)習(xí)相關(guān)課程:

  • Fei Fei Li的用于視覺(jué)識(shí)別的卷積神經(jīng)網(wǎng)絡(luò) : CS231n Convolutional Neural Networks for Visual Recognition
  • Andrew Ng(一個(gè)是Coursera上的課程,一個(gè)是Stanford的課程):Machine LearningCS 229: Machine Learning
  • Hinton的神經(jīng)網(wǎng)絡(luò)課程(Neural Network for Machine Learning)(2012年的)Coursera - Free Online Courses From Top Universities

3)深度增強(qiáng)學(xué)習(xí)相關(guān)blog:

  • drl的入門博客(感謝知友Richard Huang)
1. Guest Post (Part I): Demystifying Deep Reinforcement Learning

2.Guest Post (Part II): Deep Reinforcement Learning with Neon

3.Blog Post (Part III): Deep Reinforcement Learning with OpenAI Gym

  • (最新)Andrej Karpathy blog: Deep Reinforcement Learning: Pong from Pixels

2 深度增強(qiáng)學(xué)習(xí)相關(guān)講座

  • David Silver的:

ICLR 2015 part 1 youtube.com/watch?

ICLR 2015 part 2 youtube.com/watch?

UAI 2015 youtube.com/watch?

RLDM 2015 Deep Reinforcement Learning

(最新)ICML 2016:深度增強(qiáng)學(xué)習(xí)TutorialAlphaGo Tutorial

  • Pieter Abbeel: youtube.com/watch?
  • (最新)Sergey Levine: Deep Robotic Learning
  • (最新)John Schulman:Machine Learning Summer School

3 論文資料

  • GitHub - junhyukoh/deep-reinforcement-learning-papers: A list of recent papers regarding deep reinforcement learning
  • GitHub - muupan/deep-reinforcement-learning-papers: A list of papers and resources dedicated to deep reinforcement learning

這兩個(gè)人收集的基本涵蓋了當(dāng)前deep reinforcement learning 的論文資料。目前確實(shí)不多。

4 大牛與企業(yè)情況:

  • DeepMind:deepmind.com/publicatio
  • OpenAI: OpenAI Gym
  • Pieter Abbeel 團(tuán)隊(duì)(已加入OpenAI):Pieter Abbeel---Associate Professor UC Berkeley---Co-Founder Gradescope---
  • Satinder Singh:Home page for Satinder Singh (Baveja) and Reinforcement Learning
  • CMU 進(jìn)展:Lerrel PintoRuslan Salakhutdinov
  • Prefered Networks: (日本創(chuàng)業(yè)公司)Preferred Networks
  • Osaro:www.osaro.com

5 會(huì)議情況

  • NIPS 2015 Deep Reinforcement Learning Workshop
  • ICLR 2016
  • (最新)RSS 2016 Deep Learning for Robotics

6 開(kāi)源代碼

在github可以找到dqn,ddpg,a3c, trpo 等深度增強(qiáng)學(xué)習(xí)典型算法的代碼,以下為一些舉例的開(kāi)源代碼:

  • GitHub - songrotek/DeepTerrainRL: terrain-adaptive locomotion skills using deep reinforcement learning
  • GitHub - songrotek/async-rl: An attempt to reproduce the results of "Asynchronous Methods for Deep Reinforcement Learning" (http://arxiv.org/abs/1602.01783)
  • GitHub - songrotek/rllab: rllab is a framework for developing and evaluating reinforcement learning algorithms.
  • GitHub - songrotek/DRL-FlappyBird: Playing Flappy Bird Using Deep Reinforcement Learning (Based on Deep Q Learning DQN using Tensorflow)
  • GitHub - songrotek/DeepMind-Atari-Deep-Q-Learner: The original code from the DeepMind article + my tweaks



總結(jié)

以上是生活随笔為你收集整理的Deep Reinforcement Learning 深度增强学习资源的全部?jī)?nèi)容,希望文章能夠幫你解決所遇到的問(wèn)題。

如果覺(jué)得生活随笔網(wǎng)站內(nèi)容還不錯(cuò),歡迎將生活随笔推薦給好友。