Deep Reinforcement Learning 深度增强学习资源
http://blog.csdn.net/songrotek/article/details/50572935
1 學(xué)習(xí)資料
增強(qiáng)學(xué)習(xí)課程 David Silver (有視頻和ppt):
http://www0.cs.ucl.ac.uk/staff/D.Silver/web/Teaching.html
最好的增強(qiáng)學(xué)習(xí)教材:
Reinforcement Learning: An Introduction
https://webdocs.cs.ualberta.ca/~sutton/book/the-book.html
?
深度學(xué)習(xí)課程 (有視頻有ppt有作業(yè))
?
https://www.cs.ox.ac.uk/people/nando.defreitas/machinelearning/
?
深度增強(qiáng)學(xué)習(xí)的講座都是David Silver的:
ICLR 2015 part 1?https://www.youtube.com/watch?v=EX1CIVVkWdE
ICLR 2015 part 2?https://www.youtube.com/watch?v=zXa6UFLQCtg
UAI 2015?https://www.youtube.com/watch?v=qLaDWKd61Ig
RLDM 2015?http://videolectures.net/rldm2015_silver_reinforcement_learning/
?
其他課程:
增強(qiáng)學(xué)習(xí)
Michael Littman:
https://www.udacity.com/course/reinforcement-learning–ud600
?
AI(包含增強(qiáng)學(xué)習(xí),使用Pacman實(shí)驗(yàn))
Pieter Abbeel:
https://www.edx.org/course/artificial-intelligence-uc-berkeleyx-cs188-1x-0#.VKuKQmTF_og
?
Deep reinforcement Learning:
Pieter Abbeel
http://rll.berkeley.edu/deeprlcourse/
?
高級(jí)機(jī)器人技術(shù)(Advanced Robotics):
Pieter Abbeel:
http://www.cs.berkeley.edu/~pabbeel/cs287-fa15/
?
深度學(xué)習(xí)相關(guān)課程:
用于視覺(jué)識(shí)別的卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network for visual network)
http://cs231n.github.io/
?
機(jī)器學(xué)習(xí) Machine Learning
Andrew Ng
https://www.coursera.org/learn/machine-learning/
http://cs229.stanford.edu/
?
神經(jīng)網(wǎng)絡(luò)(Neural Network for Machine Learning)(2012年的)
Hinton:
https://www.coursera.org/course/neuralnets
?
最新機(jī)器人專題課程Penn(2016年開(kāi)課):
https://www.coursera.org/specializations/robotics
?
2 論文資料
https://github.com/junhyukoh/deep-reinforcement-learning-papers
https://github.com/muupan/deep-reinforcement-learning-papers
?
這兩個(gè)人收集的基本涵蓋了當(dāng)前deep reinforcement learning 的論文資料。目前確實(shí)不多。
?
3 大牛情況:
DeepMind:
http://www.deepmind.com/publications.html
?
Pieter Abbeel 團(tuán)隊(duì):
http://www.eecs.berkeley.edu/~pabbeel/
?
Satinder Singh:
http://web.eecs.umich.edu/~baveja/
?
CMU 進(jìn)展:
http://www.cs.cmu.edu/~lerrelp/
?
Prefered Networks: (日本創(chuàng)業(yè)公司,很強(qiáng),某有代碼)
?
4 會(huì)議情況
Deep Reinforcement Learning Workshop NIPS 2015
http://rll.berkeley.edu/deeprlworkshop/
***********************************************************************************************
Deep Reinforcement Learning 深度增強(qiáng)學(xué)習(xí)資源 (持續(xù)更新)
Flood Sung · 3 個(gè)月前Deep Reinforcement Learning深度增強(qiáng)學(xué)習(xí)可以說(shuō)發(fā)源于2013年DeepMind的Playing Atari with Deep Reinforcement Learning 一文,之后2015年DeepMind 在Nature上發(fā)表了Human Level Control through Deep Reinforcement Learning一文使Deep Reinforcement Learning得到了較廣泛的關(guān)注,在2015年涌現(xiàn)了較多的Deep Reinforcement Learning的成果。而2016年,隨著AlphaGo的出現(xiàn),Deep Reinforcement Learning 將進(jìn)入全面發(fā)展的階段。
Deep Reinforcement Learning面向決策與控制問(wèn)題,而決策與控制很大程度上決定了人工智能的發(fā)展水平。也因此,AlphaGo的出現(xiàn)具有里程碑的意義。Deep Reinforcement Learning研究使用深度神經(jīng)網(wǎng)絡(luò)來(lái)解決決策控制問(wèn)題,是深度學(xué)習(xí)領(lǐng)域最前沿的研究方向之一。
本文主要收集與Deep Reinforcement Learning相關(guān)的各種資料,希望對(duì)有興趣研究的童鞋有所幫助。接下來(lái),本專欄將由我繼續(xù)發(fā)布Deep Reinforcement Learning的相關(guān)文章。
PS:最新的資料會(huì)在資料前方標(biāo)出。
1 學(xué)習(xí)資料
1)增強(qiáng)學(xué)習(xí)相關(guān)課程:
- David Silver的增強(qiáng)學(xué)習(xí)課程(有視頻和ppt): http://www0.cs.ucl.ac.uk/staff/D.Silver/web/Teaching.html
- 最好的增強(qiáng)學(xué)習(xí)教材:Sutton & Barto Book: Reinforcement Learning: AnIntroduction
- Nando de Freitas的深度學(xué)習(xí)課程 (有視頻有ppt有作業(yè)):Machine Learning
- Michael Littman的增強(qiáng)學(xué)習(xí)課程:https://www.udacity.com/course/reinforcement-learning–ud600
- Pieter Abbeel 的AI課程(包含增強(qiáng)學(xué)習(xí),使用Pacman實(shí)驗(yàn)):Artificial Intelligence
- Pieter Abbeel 的深度增強(qiáng)學(xué)習(xí)課程:CS 294 Deep Reinforcement Learning, Fall 2015
- Pieter Abbeel 的 高級(jí)機(jī)器人技術(shù)(Advanced Robotics): CS287 Fall 2015
- 最新機(jī)器人專題課程Penn(2016年開(kāi)課):Specialization
2)深度學(xué)習(xí)相關(guān)課程:
- Fei Fei Li的用于視覺(jué)識(shí)別的卷積神經(jīng)網(wǎng)絡(luò) : CS231n Convolutional Neural Networks for Visual Recognition
- Andrew Ng(一個(gè)是Coursera上的課程,一個(gè)是Stanford的課程):Machine LearningCS 229: Machine Learning
- Hinton的神經(jīng)網(wǎng)絡(luò)課程(Neural Network for Machine Learning)(2012年的)Coursera - Free Online Courses From Top Universities
3)深度增強(qiáng)學(xué)習(xí)相關(guān)blog:
- drl的入門博客(感謝知友Richard Huang)
2.Guest Post (Part II): Deep Reinforcement Learning with Neon
3.Blog Post (Part III): Deep Reinforcement Learning with OpenAI Gym
- (最新)Andrej Karpathy blog: Deep Reinforcement Learning: Pong from Pixels
2 深度增強(qiáng)學(xué)習(xí)相關(guān)講座
- David Silver的:
ICLR 2015 part 1 https://www.youtube.com/watch?v=EX1CIVVkWdE
ICLR 2015 part 2 https://www.youtube.com/watch?v=zXa6UFLQCtg
UAI 2015 https://www.youtube.com/watch?v=qLaDWKd61Ig
RLDM 2015 Deep Reinforcement Learning
(最新)ICML 2016:深度增強(qiáng)學(xué)習(xí)TutorialAlphaGo Tutorial
- Pieter Abbeel: https://www.youtube.com/watch?v=evq4p1zhS7Q
- (最新)Sergey Levine: Deep Robotic Learning
- (最新)John Schulman:Machine Learning Summer School
3 論文資料
- GitHub - junhyukoh/deep-reinforcement-learning-papers: A list of recent papers regarding deep reinforcement learning
- GitHub - muupan/deep-reinforcement-learning-papers: A list of papers and resources dedicated to deep reinforcement learning
這兩個(gè)人收集的基本涵蓋了當(dāng)前deep reinforcement learning 的論文資料。目前確實(shí)不多。
4 大牛與企業(yè)情況:
- DeepMind:http://www.deepmind.com/publications.html
- OpenAI: OpenAI Gym
- Pieter Abbeel 團(tuán)隊(duì)(已加入OpenAI):Pieter Abbeel---Associate Professor UC Berkeley---Co-Founder Gradescope---
- Satinder Singh:Home page for Satinder Singh (Baveja) and Reinforcement Learning
- CMU 進(jìn)展:Lerrel PintoRuslan Salakhutdinov
- Prefered Networks: (日本創(chuàng)業(yè)公司)Preferred Networks
- Osaro:www.osaro.com
5 會(huì)議情況
- NIPS 2015 Deep Reinforcement Learning Workshop
- ICLR 2016
- (最新)RSS 2016 Deep Learning for Robotics
6 開(kāi)源代碼
在github可以找到dqn,ddpg,a3c, trpo 等深度增強(qiáng)學(xué)習(xí)典型算法的代碼,以下為一些舉例的開(kāi)源代碼:
- GitHub - songrotek/DeepTerrainRL: terrain-adaptive locomotion skills using deep reinforcement learning
- GitHub - songrotek/async-rl: An attempt to reproduce the results of "Asynchronous Methods for Deep Reinforcement Learning" (http://arxiv.org/abs/1602.01783)
- GitHub - songrotek/rllab: rllab is a framework for developing and evaluating reinforcement learning algorithms.
- GitHub - songrotek/DRL-FlappyBird: Playing Flappy Bird Using Deep Reinforcement Learning (Based on Deep Q Learning DQN using Tensorflow)
- GitHub - songrotek/DeepMind-Atari-Deep-Q-Learner: The original code from the DeepMind article + my tweaks
總結(jié)
以上是生活随笔為你收集整理的Deep Reinforcement Learning 深度增强学习资源的全部?jī)?nèi)容,希望文章能夠幫你解決所遇到的問(wèn)題。