日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程语言 > python >内容正文

python

Python自然语言处理学习笔记(66):7.7 小结

發布時間:2025/7/25 python 26 豆豆
生活随笔 收集整理的這篇文章主要介紹了 Python自然语言处理学习笔记(66):7.7 小结 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

7.7???Summary 小結

  • Information extraction systems search large bodies of unrestricted text for specific types of entities and relations, and use them to populate well-organized databases. These databases can then be used to find answers for specific questions.
  • The typical architecture for an information extraction system begins by segmenting, tokenizing, and part-of-speech tagging the text. The resulting data is then searched for specific types of entity. Finally, the information extraction system looks at entities that are mentioned near one another in the text, and tries to determine whether specific relationships hold between those entities.
  • Entity recognition is often performed using chunkers, which segment multi-token sequences, and label them with the appropriate entity type. Common entity types include ORGANIZATION, PERSON, LOCATION, DATE, TIME, MONEY, and GPE (geo-political entity).
  • Chunkers can be constructed using rule-based systems, such as the RegexpParser class provided by NLTK; or using machine learning techniques, such as the ConsecutiveNPChunker presented in this chapter. In either case, part-of-speech tags are often a very important feature when searching for chunks.
  • Although chunkers are specialized to create relatively flat data structures, where no two chunks are allowed to overlap, they can be cascaded together to build nested structures.
  • Relation extraction can be performed using either rule-based systems which typically look for specific patterns in the text that connect entities and the intervening words; or using machine-learning systems which typically attempt to learn such patterns automatically from a training corpus.?

轉載于:https://www.cnblogs.com/yuxc/archive/2012/02/09/2344461.html

總結

以上是生活随笔為你收集整理的Python自然语言处理学习笔记(66):7.7 小结的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。