日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 综合教程 >内容正文

综合教程

李开复《连线》杂志专栏:新冠大流行将加速医疗AI革新

發布時間:2023/11/22 综合教程 32 生活家
生活随笔 收集整理的這篇文章主要介紹了 李开复《连线》杂志专栏:新冠大流行将加速医疗AI革新 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

  2020 年元旦前夜,一家位于加拿大多倫多市的人工智能(AI)企業 BlueDot 捕捉到一些異常:中國武漢市海鮮市場周邊出現多起罕見肺炎病例,BlueDot 迅即反應,運用自然語言處理、機器學習等技術,結合大數據和定位追蹤,迅速向合作的政府部門和公共衛生機構客戶傳送警報并報告擴散狀況。

  BlueDot 所監測到的異狀,正是數月后撼動全球的新型冠狀病毒肺炎(Covid-19),這比世界衛生組織首度公開警示新冠病毒的時間還要早上 9 天。

  BlueDot 的 AI 平臺示范了人工智能技術對重大疫情能起到早期預警的功用,過去幾個月里,AI 在這場全球抗疫戰的許多方面發揮了獨特作用:從疫情預測到篩檢,從接觸警示到快速診斷,從前線無人配送到實驗室藥物研發,人工智能助力防疫派上了不少用場,為特定場景應用賦能。

  隨著疫情在全球蔓延,AI 技術的創新應用也在各地相繼落地。在韓國,基于地理位置的信息傳遞已經成為控制病毒傳播的重要工具,當人們靠近確診病例時,就會收到基于位置的緊急信息提醒。在中國,阿里巴巴推出的 AI 算法能夠在 20 秒內診斷出疑似病例(比人類檢測快了近 60 倍),準確率高達 96%。無人配送車輛很快被投入到人類難以承受的場景,代替人類執行高傳染風險的運輸任務。湖北、廣東等省份的多家醫院相繼使用機器人為病人或被隔離家庭運送食物、藥品和物資。而在美國加州,計算機科學家正在研發能遠程檢測獨居老人健康情況的系統,一旦老人出現身體異常癥狀,系統就會發出即時警報。

  不過,目前人工智能在公共健康體系的應用仍顯零散也未成體系。坦率說,過去四個月內,AI 在抗疫之戰中的表現并不十分突出,我最多只能給它打分“B-”。新冠大流行暴露了我們的醫療系統的脆弱性:預警響應不充分、通報信息不精確、醫療物資分配不均、醫務人員超負疲憊、醫院病床緊繃、疫苗研發周期長等諸多痛點。當然,AI 的零散表現也有客觀原因:醫療體系可說是現代社會各類運轉體系中最為復雜、陳舊不堪且難以變通的體系;且在新冠疫情襲來之前,我們并沒有真正意識到醫療體系問題的緊迫性,沒有提前采取相應的技術預防措施;最為關鍵的是,我們缺少建構 AI 解決方案所需的大數據。

  把目光投向未來,我看到以下兩個 AI 賦能醫療的樂觀因素。

  首先,作為 AI 燃料的醫療大數據已被激活。舉例來說,機器學習數據科學平臺 Kaggle 組建了新冠病毒開放研究數據集,名為 CORD-19。它將相關數據進行匯編,并把最新研究集中收錄,匯總的格式可被機器讀取和解析,以便于 AI 進行機器學習。至今這個數據集收錄了 12.8 萬篇包含 Covid-19、冠狀病毒、SARS(非典型肺炎)、MERS(中東呼吸綜合癥)等關聯術語的醫學專業學術文章。

  其次,眼下全世界的醫學專家和計算機科學家都將精力集中在解決疫情問題。X大獎基金會創始人彼得·戴曼迪斯(Peter Diamandis)估計,全球現在有多達 2 億名的醫師、科學家、護士、技術專家和工程師投入防治冠狀病毒的相關研發中,他們正在進行數以萬計的實驗,并以“前所未有的透明度和速度”共享信息。

  3 月 16 日 Kaggle 發起“新冠病毒研究挑戰”,匯集與疫情相關的大量信息,包括病毒的自然歷史、傳播和診斷方法、以及從過往流行病學研究中汲取的經驗教訓,幫助全球各地衛生機構及時掌握最新情況,以做出基于數據的分析決策。該項目發布后的五天內被瀏覽超過 50 萬次,下載量逾 1.8 萬次。在國內疫情爆發后不到一個月,阿里巴巴便推出了一種 AI 算法,該算法基于 5000 多個新冠肺炎確診病例進行訓練,并關聯到治療后續諸如肺部白色陰影縮小等的成效追蹤。隨后,阿里巴巴將其云端 AI 平臺向全球醫療專業人員開源,與合作伙伴聯手部署更大批量的匿名數據,推出包括疫情預測、CT 影像分析、冠狀病毒基因組測序等模塊。

  據估計,現今全球醫療數據的規模每隔幾個月就翻一倍。2019 年一份覆蓋 19 個國家 AI 醫療市場的研究估計,AI 醫療市場的年復合增長率為 41.7%,從 2018 年的 13 億美元將增長至 2025 年的 130 億美元,主要分布在六大領域:醫院工作流程、可穿戴設備、醫學影像和診斷、診療計劃、虛擬助手、以及最重要的藥物研發,新冠疫情期間浮現的種種需求,將加速 AI 賦能醫療的場景落地。

  在后疫情時代,我期待 AI 將加速融入醫療體系,賦能并推動醫療改革。其中深度學習(Deep Learning),即以一種高效方法運算海量、多維數據的能力,是 AI 結合醫療最為可期的機遇之一。深度神經網絡(Deep Neural Networks)作為 AI 的一個子領域,已經被用于醫學掃描、病理切片、眼科檢查甚至結腸鏡檢查,以得出準確而快速的算法判讀。十幾年后,不少國家和地區的醫療體驗在 AI 賦能的作用下將發生根本性改變。

  AI 賦能醫療,首先能簡化及優化現有的醫療流程,例如醫院的作業流程,保險履約的繁復流程。將 AI 與 RPA(Robotic Process Automation 機器人流程自動化)結合,可對某項工作流程進行智能拆解及優化,進而大大提高醫療系統的運營效率,預約看診、保險理賠及其他流程性工作都會得到效率提升。AI 還能加快早期診斷信息的收錄并實現自動化,AI 技術所能處理的文本、語言、數字的體量,無論在數量上還是精度上都是機器級別,遠非人類所及。

  有了充分的醫療大數據作為基礎,AI 還能為每個人或者每個群體建立健康數據基準量表。當我們掌握個體健康數據,就可以根據跟蹤動態數據的波動變化,進行數據驅動的診斷,并對潛在大流行疾病的征兆進行早期追蹤研判。然而,再先進的技術系統要做到真正有效,勢必需要與既存的公共衛生警示和匯報機制形成高效鏈接,此類信息斷層即是新冠疫情在早期爆發期間存在的具體缺失。

  再上一個層次的 AI 賦能體現在助力新藥研發、基因組測序、干細胞、CRISPR(基因編輯)等醫學突破方面, AI 模型和算法應用都有其用武之地。在制藥行業,研發一種新藥往往需要付出高昂的投入,某次成功前必有多次付諸流水的失敗試驗,也連帶消耗巨大的時間和金錢成本?,F在,科學家們可使用 AI 機器學習來模擬上千個變量,測試它們的復合效應會對人類細胞反應產生何種影響,這類 AI 新藥研發的技術已被用于新冠病毒疫苗和其他療法。創新工場所投資總部位于香港的 AI 藥物研發公司 Insilico Medicine 是首批對新冠病毒快速響應的企業之一,這家公司利用生成式化學 AI 平臺設計出新藥物小分子,以復制主要病毒蛋白為靶標,早在 2 月 5 日便公布了這些小分子結構。AI 為新藥發明開辟了一個新時代,用人工智能技術來換取藥品研發周期的時間和成本,整個制藥行業勢將迎來翻天覆地的變革。

  不久的將來,隨著醫療科學和計算機科學進一步融合,我們將進入一個全面自動化的 AI 時代,到時人們可以通過可穿戴設備、生物傳感器、智能家居檢測設備等來確保自身和家人的健康??纱┐髟O備和其他物聯網設備的數據質量和多樣性大幅提高,將能產生一個有效的良性循環。穿越到未來,下一場疫情在大范圍蔓延之前就應該能夠被跟蹤、追溯、攔截并消滅無蹤。

  或許再過 15 年,許多人的家里都會有 AI 個人助理照料我們,幫著解決全家人的日常健康所需。機器人或者無人機會把我們的藥品送上門,如果需要進行手術或者外科治療,通常會由機器人操作,或由機器人輔助人類外科醫師完成。在未來,醫生和護士將把更多的精力放在機器無法勝任的任務上,醫療專業人員及富有同情心的護理人員,將同時具備護士、醫療技師、社會工作者、甚至心理咨詢師的技能。他們會使用經 AI 強化的診斷工具和系統,但更多的時間會與患者溝通,安撫他們的傷痛,為他們提供情感扶持。在我的想象里,15 年后的醫療健康場景可能是這個樣子的:

  2035 年一個冬季早晨,我醒來后就覺得有點兒喉嚨痛。我起身去洗手間,刷牙的時候,洗手間的鏡子通過紅外傳感器測量了我的體溫。刷完牙后一分鐘,我的私人 AI 醫師助理發出了警報,顯示我的唾液樣本部分指數異常,并在輕微低燒。AI 醫師助理建議我在家進行指尖探針采血。我在泡咖啡時,醫師助理返回了分析結果,判斷我可能是得了這個季節正在流行的兩種流感其中一種。之后,我的 AI 醫師助理建議,如果我覺得有必要聯系家庭醫生的話,有兩個時間空檔可以跟她視頻通話。通話之前,家庭醫生已經收到我所有癥狀的詳細信息。她給我開了一種減充血劑和撲熱息痛,一會兒無人機會把藥品送到家門口。

  當然,凡涉及到病患醫療記錄,就得談談隱私和數據保護的關鍵問題。我認為,任憑有用的數據各自孤島式的存在,不善加利用,不從中提煉有價值的信息,不用以推動社會進步,是相當不負責任的做法。技術產生的問題應該由技術解決。隨著 AI 技術浪潮而出現的諸如數據保護等問題,應該由更為創新的技術方法來應對。

  好消息是,近年聯邦學習(也被稱為分布式學習)已經在數據保護上取得了顯著的進展?;诼摪顚W習技術,患者的數據將永遠不會離開所在的醫療機構、醫院或個人設備服務器等原始存儲設備,機器學習模型將在獨立的數據集基礎上進行訓練處理,再進行后續整合。聯邦學習、同態加密,結合可信硬件執行環境等技術,將進一步確保數據的計算、傳輸、存儲過程能夠適配不同的隱私偏好,以因應不同國家與文化對于隱私保護的需求差異。

  這次新冠肺炎疫情還驗證了一個事實:整體人類命運是共同體,人們對未來運用 AI 等先進技術共度難關寄予一致的期盼。過去,國際合作曾消滅了全球延燒的天花,也幾乎根除了小兒麻痹癥。公共衛生無國界,控制及消除流行病是個毋庸置疑的共同目標。在醫學領域,每個國家都能從他國的研究基礎上學習受益并攜手并進,全球化的數據科學,將進一步幫助人類獲取對健康和疾病最為深刻、最為全面的洞悉。

  AI 有潛力協助我們為下一次疾病大流行做更充分的準備。這需要醫學專家、AI 科學家、投資者和決策者傾力協作,也需要關注醫療保健領域的投資人為聰明的企業家和科學家注入新一波動能。

  經歷這次疫情,我們應清醒地意識到,要將人類醫療體系推往新的高度,著實需要傾盡全球之力。

總結

以上是生活随笔為你收集整理的李开复《连线》杂志专栏:新冠大流行将加速医疗AI革新的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。