日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 人文社科 > 生活经验 >内容正文

生活经验

在Caffe中调用TensorRT提供的MNIST model

發布時間:2023/11/27 生活经验 28 豆豆
生活随笔 收集整理的這篇文章主要介紹了 在Caffe中调用TensorRT提供的MNIST model 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

在TensorRT 2.1.2中提供了MNIST的model,這里拿來用Caffe的代碼調用實現,原始的mnist_mean.binaryproto文件調整為了純二進制文件mnist_tensorrt_mean.binary,測試結果與使用TensorRT調用(http://blog.csdn.net/fengbingchun/article/details/78552908)一致:

測試代碼如下:

#include "funset.hpp"
#include <memory>
#include <fstream>
#include <tuple>
#include "common.hpp"int mnist_tensorrt_predict()
{
#ifdef CPU_ONLYcaffe::Caffe::set_mode(caffe::Caffe::CPU);
#elsecaffe::Caffe::set_mode(caffe::Caffe::GPU);
#endifconst std::string deploy_file{ "E:/GitCode/Caffe_Test/test_data/model/mnist/mnist_tensorrt.prototxt" };const std::string model_filename{ "E:/GitCode/Caffe_Test/test_data/model/mnist/mnist_tensorrt.caffemodel" };const std::string mean_file{ "E:/GitCode/Caffe_Test/test_data/model/mnist/mnist_tensorrt_mean.binary" };const std::string image_path{ "E:/GitCode/Caffe_Test/test_data/images/handwritten_digits/" };caffe::Net<float> caffe_net(deploy_file, caffe::TEST);caffe_net.CopyTrainedLayersFrom(model_filename);// print net infofprintf(stdout, "input blob num: %d, output blob num: %d\n", caffe_net.num_inputs(), caffe_net.num_outputs());const boost::shared_ptr<caffe::Blob<float> > blob_by_name = caffe_net.blob_by_name("data");int image_num = blob_by_name->num();int image_channel = blob_by_name->channels();int image_height = blob_by_name->height();int image_width = blob_by_name->width();fprintf(stdout, "inpub blob shape(num, channels, height, width): %d, %d, %d, %d\n",image_num, image_channel, image_height, image_width);fprintf(stdout, "layer names: ");for (int i = 0; i < caffe_net.layer_names().size(); ++i) {fprintf(stdout, "  %s  ", caffe_net.layer_names()[i].c_str());}fprintf(stdout, "\nblob names: ");for (int i = 0; i < caffe_net.blob_names().size(); ++i) {fprintf(stdout, "  %s  ", caffe_net.blob_names()[i].c_str());}fprintf(stdout, "\nlayer types: ");for (int i = 0; i < caffe_net.layers().size(); ++i) {fprintf(stdout, "  %s  ", caffe_net.layers()[i]->type());}const std::vector<caffe::Blob<float>*> output_blobs = caffe_net.output_blobs();fprintf(stdout, "\noutput blobs num: %d, blob(num, channel, heihgt, width): %d, %d, %d, %d\n",output_blobs.size(), output_blobs[0]->num(), output_blobs[0]->channels(), output_blobs[0]->height(), output_blobs[0]->width());const int image_size{ image_num * image_channel * image_height * image_width };std::unique_ptr<float[]> mean_values(new float[image_size]);std::ifstream in(mean_file.c_str(), std::ios::in | std::ios::binary);if (!in.is_open()) {fprintf(stderr, "read mean file fail: %s\n", mean_file.c_str());return -1;}in.read((char*)mean_values.get(), image_size * sizeof(float));in.close();const std::vector<int> target{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };typedef std::tuple<int, float> result;std::vector<result> results;for (const auto& num : target) {std::string str = std::to_string(num);str += ".png";str = image_path + str;cv::Mat mat = cv::imread(str.c_str(), 0);if (!mat.data) {fprintf(stderr, "load image error: %s\n", str.c_str());return -1;}cv::resize(mat, mat, cv::Size(image_width, image_height));mat.convertTo(mat, CV_32FC1);float* p = (float*)mat.data;for (int i = 0; i < image_size; ++i) {p[i] -= mean_values.get()[i];}const std::vector<caffe::Blob<float>*>& blob_input = caffe_net.input_blobs();blob_input[0]->set_cpu_data((float*)mat.data);const std::vector<caffe::Blob<float>*>& output_blob_ = caffe_net.Forward(nullptr);const float* output = output_blob_[0]->cpu_data();float tmp{ -1.f };int pos{ -1 };for (int j = 0; j < output_blobs[0]->count(); j++) {if (tmp < output[j]) {pos = j;tmp = output[j];}}result ret = std::make_tuple(pos, tmp);results.push_back(ret);}for (auto i = 0; i < target.size(); i++)fprintf(stdout, "actual digit is: %d, result digit is: %d, probability: %f\n",target[i], std::get<0>(results[i]), std::get<1>(results[i]));fprintf(stdout, "predict finish\n");return 0;
}
測試圖像如下:


執行結果如下:

GitHub:?https://github.com/fengbingchun/Caffe_Test

總結

以上是生活随笔為你收集整理的在Caffe中调用TensorRT提供的MNIST model的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。