日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 人文社科 > 生活经验 >内容正文

生活经验

mask rcnn网络结构笔记

發布時間:2023/11/27 生活经验 25 豆豆
生活随笔 收集整理的這篇文章主要介紹了 mask rcnn网络结构笔记 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

基于https://gluon-cv.mxnet.io/build/examples_instance/demo_mask_rcnn.html?調試打印得到net.summary(x)

--------------------------------------------------------------------------------Layer (type)                                Output Shape         Param #
================================================================================Input                            (1, 3, 600, 800)               0Conv2D-1                           (1, 64, 300, 400)            9408BatchNorm-2                           (1, 64, 300, 400)             256Activation-3                           (1, 64, 300, 400)               0MaxPool2D-4                           (1, 64, 150, 200)               0Conv2D-5                           (1, 64, 150, 200)            4096BatchNorm-6                           (1, 64, 150, 200)             256Activation-7                           (1, 64, 150, 200)               0Conv2D-8                           (1, 64, 150, 200)           36864BatchNorm-9                           (1, 64, 150, 200)             256Activation-10                           (1, 64, 150, 200)               0Conv2D-11                          (1, 256, 150, 200)           16384BatchNorm-12                          (1, 256, 150, 200)            1024Conv2D-13                          (1, 256, 150, 200)           16384BatchNorm-14                          (1, 256, 150, 200)            1024Activation-15                          (1, 256, 150, 200)               0BottleneckV1b-16                          (1, 256, 150, 200)               0Conv2D-17                           (1, 64, 150, 200)           16384BatchNorm-18                           (1, 64, 150, 200)             256Activation-19                           (1, 64, 150, 200)               0Conv2D-20                           (1, 64, 150, 200)           36864BatchNorm-21                           (1, 64, 150, 200)             256Activation-22                           (1, 64, 150, 200)               0Conv2D-23                          (1, 256, 150, 200)           16384BatchNorm-24                          (1, 256, 150, 200)            1024Activation-25                          (1, 256, 150, 200)               0BottleneckV1b-26                          (1, 256, 150, 200)               0Conv2D-27                           (1, 64, 150, 200)           16384BatchNorm-28                           (1, 64, 150, 200)             256Activation-29                           (1, 64, 150, 200)               0Conv2D-30                           (1, 64, 150, 200)           36864BatchNorm-31                           (1, 64, 150, 200)             256Activation-32                           (1, 64, 150, 200)               0Conv2D-33                          (1, 256, 150, 200)           16384BatchNorm-34                          (1, 256, 150, 200)            1024Activation-35                          (1, 256, 150, 200)               0BottleneckV1b-36                          (1, 256, 150, 200)               0Conv2D-37                          (1, 128, 150, 200)           32768BatchNorm-38                          (1, 128, 150, 200)             512Activation-39                          (1, 128, 150, 200)               0Conv2D-40                           (1, 128, 75, 100)          147456BatchNorm-41                           (1, 128, 75, 100)             512Activation-42                           (1, 128, 75, 100)               0Conv2D-43                           (1, 512, 75, 100)           65536BatchNorm-44                           (1, 512, 75, 100)            2048Conv2D-45                           (1, 512, 75, 100)          131072BatchNorm-46                           (1, 512, 75, 100)            2048Activation-47                           (1, 512, 75, 100)               0BottleneckV1b-48                           (1, 512, 75, 100)               0Conv2D-49                           (1, 128, 75, 100)           65536BatchNorm-50                           (1, 128, 75, 100)             512Activation-51                           (1, 128, 75, 100)               0Conv2D-52                           (1, 128, 75, 100)          147456BatchNorm-53                           (1, 128, 75, 100)             512Activation-54                           (1, 128, 75, 100)               0Conv2D-55                           (1, 512, 75, 100)           65536BatchNorm-56                           (1, 512, 75, 100)            2048Activation-57                           (1, 512, 75, 100)               0BottleneckV1b-58                           (1, 512, 75, 100)               0Conv2D-59                           (1, 128, 75, 100)           65536BatchNorm-60                           (1, 128, 75, 100)             512Activation-61                           (1, 128, 75, 100)               0Conv2D-62                           (1, 128, 75, 100)          147456BatchNorm-63                           (1, 128, 75, 100)             512Activation-64                           (1, 128, 75, 100)               0Conv2D-65                           (1, 512, 75, 100)           65536BatchNorm-66                           (1, 512, 75, 100)            2048Activation-67                           (1, 512, 75, 100)               0BottleneckV1b-68                           (1, 512, 75, 100)               0Conv2D-69                           (1, 128, 75, 100)           65536BatchNorm-70                           (1, 128, 75, 100)             512Activation-71                           (1, 128, 75, 100)               0Conv2D-72                           (1, 128, 75, 100)          147456BatchNorm-73                           (1, 128, 75, 100)             512Activation-74                           (1, 128, 75, 100)               0Conv2D-75                           (1, 512, 75, 100)           65536BatchNorm-76                           (1, 512, 75, 100)            2048Activation-77                           (1, 512, 75, 100)               0BottleneckV1b-78                           (1, 512, 75, 100)               0Conv2D-79                           (1, 256, 75, 100)          131072BatchNorm-80                           (1, 256, 75, 100)            1024Activation-81                           (1, 256, 75, 100)               0Conv2D-82                            (1, 256, 38, 50)          589824BatchNorm-83                            (1, 256, 38, 50)            1024Activation-84                            (1, 256, 38, 50)               0Conv2D-85                           (1, 1024, 38, 50)          262144BatchNorm-86                           (1, 1024, 38, 50)            4096Conv2D-87                           (1, 1024, 38, 50)          524288BatchNorm-88                           (1, 1024, 38, 50)            4096Activation-89                           (1, 1024, 38, 50)               0BottleneckV1b-90                           (1, 1024, 38, 50)               0Conv2D-91                            (1, 256, 38, 50)          262144BatchNorm-92                            (1, 256, 38, 50)            1024Activation-93                            (1, 256, 38, 50)               0Conv2D-94                            (1, 256, 38, 50)          589824BatchNorm-95                            (1, 256, 38, 50)            1024Activation-96                            (1, 256, 38, 50)               0Conv2D-97                           (1, 1024, 38, 50)          262144BatchNorm-98                           (1, 1024, 38, 50)            4096Activation-99                           (1, 1024, 38, 50)               0BottleneckV1b-100                           (1, 1024, 38, 50)               0Conv2D-101                            (1, 256, 38, 50)          262144BatchNorm-102                            (1, 256, 38, 50)            1024Activation-103                            (1, 256, 38, 50)               0Conv2D-104                            (1, 256, 38, 50)          589824BatchNorm-105                            (1, 256, 38, 50)            1024Activation-106                            (1, 256, 38, 50)               0Conv2D-107                           (1, 1024, 38, 50)          262144BatchNorm-108                           (1, 1024, 38, 50)            4096Activation-109                           (1, 1024, 38, 50)               0BottleneckV1b-110                           (1, 1024, 38, 50)               0Conv2D-111                            (1, 256, 38, 50)          262144BatchNorm-112                            (1, 256, 38, 50)            1024Activation-113                            (1, 256, 38, 50)               0Conv2D-114                            (1, 256, 38, 50)          589824BatchNorm-115                            (1, 256, 38, 50)            1024Activation-116                            (1, 256, 38, 50)               0Conv2D-117                           (1, 1024, 38, 50)          262144BatchNorm-118                           (1, 1024, 38, 50)            4096Activation-119                           (1, 1024, 38, 50)               0BottleneckV1b-120                           (1, 1024, 38, 50)               0Conv2D-121                            (1, 256, 38, 50)          262144BatchNorm-122                            (1, 256, 38, 50)            1024Activation-123                            (1, 256, 38, 50)               0Conv2D-124                            (1, 256, 38, 50)          589824BatchNorm-125                            (1, 256, 38, 50)            1024Activation-126                            (1, 256, 38, 50)               0Conv2D-127                           (1, 1024, 38, 50)          262144BatchNorm-128                           (1, 1024, 38, 50)            4096Activation-129                           (1, 1024, 38, 50)               0BottleneckV1b-130                           (1, 1024, 38, 50)               0Conv2D-131                            (1, 256, 38, 50)          262144BatchNorm-132                            (1, 256, 38, 50)            1024Activation-133                            (1, 256, 38, 50)               0Conv2D-134                            (1, 256, 38, 50)          589824BatchNorm-135                            (1, 256, 38, 50)            1024Activation-136                            (1, 256, 38, 50)               0Conv2D-137                           (1, 1024, 38, 50)          262144BatchNorm-138                           (1, 1024, 38, 50)            4096Activation-139                           (1, 1024, 38, 50)               0BottleneckV1b-140                           (1, 1024, 38, 50)               0
FasterRCNN.features
---------------------------------------------------------------------------------------------
RPNAnchorGenerator-141                               (1, 28500, 4)          983040
RPN.anchor_generator
---------------------------------------------------------------------------------------------Conv2D-142                           (1, 1024, 38, 50)         9438208Activation-143                           (1, 1024, 38, 50)               0
RPN.conv1
---------------------------------------------------------------------------------------------Conv2D-144                             (1, 15, 38, 50)           15375
RPN.score
---------------------------------------------------------------------------------------------Conv2D-145                             (1, 60, 38, 50)           61500
RPN.loc
---------------------------------------------------------------------------------------------
BBoxCornerToCenter-146                               (1, 28500, 4)               0
RPNProposal._box_to_center
---------------------------------------------------------------------------------------------
NormalizedBoxCenterDecoder-147                               (1, 28500, 4)               0
RPNProposal._box_decoder
---------------------------------------------------------------------------------------------BBoxClipToImage-148                               (1, 28500, 4)               0
RPNProposal._clipper
---------------------------------------------------------------------------------------------RPNProposal-149                               (1, 28500, 5)               0
RPN.region_proposer
---------------------------------------------------------------------------------------------RPN-150                  (1, 1000, 1), (1, 1000, 4)               0
FasterRCNN.rpn
---------------------------------------------------------------------------------------------Conv2D-151                         (1000, 512, 14, 14)          524288BatchNorm-152                         (1000, 512, 14, 14)            2048Activation-153                         (1000, 512, 14, 14)               0Conv2D-154                           (1000, 512, 7, 7)         2359296BatchNorm-155                           (1000, 512, 7, 7)            2048Activation-156                           (1000, 512, 7, 7)               0Conv2D-157                          (1000, 2048, 7, 7)         1048576BatchNorm-158                          (1000, 2048, 7, 7)            8192Conv2D-159                          (1000, 2048, 7, 7)         2097152BatchNorm-160                          (1000, 2048, 7, 7)            8192Activation-161                          (1000, 2048, 7, 7)               0BottleneckV1b-162                          (1000, 2048, 7, 7)               0Conv2D-163                           (1000, 512, 7, 7)         1048576BatchNorm-164                           (1000, 512, 7, 7)            2048Activation-165                           (1000, 512, 7, 7)               0Conv2D-166                           (1000, 512, 7, 7)         2359296BatchNorm-167                           (1000, 512, 7, 7)            2048Activation-168                           (1000, 512, 7, 7)               0Conv2D-169                          (1000, 2048, 7, 7)         1048576BatchNorm-170                          (1000, 2048, 7, 7)            8192Activation-171                          (1000, 2048, 7, 7)               0BottleneckV1b-172                          (1000, 2048, 7, 7)               0Conv2D-173                           (1000, 512, 7, 7)         1048576BatchNorm-174                           (1000, 512, 7, 7)            2048Activation-175                           (1000, 512, 7, 7)               0Conv2D-176                           (1000, 512, 7, 7)         2359296BatchNorm-177                           (1000, 512, 7, 7)            2048Activation-178                           (1000, 512, 7, 7)               0Conv2D-179                          (1000, 2048, 7, 7)         1048576BatchNorm-180                          (1000, 2048, 7, 7)            8192Activation-181                          (1000, 2048, 7, 7)               0BottleneckV1b-182                          (1000, 2048, 7, 7)               0
FasterRCNN.top_features
---------------------------------------------------------------------------------------------Dense-183                                  (1000, 81)          165969
FasterRCNN.class_predictor
---------------------------------------------------------------------------------------------Dense-184                                 (1000, 320)          655680
FasterRCNN.box_predictor
---------------------------------------------------------------------------------------------
MultiPerClassDecoder-185                (1, 1000, 80), (1, 1000, 80)               0
FasterRCNN.cls_decoder
---------------------------------------------------------------------------------------------
BBoxCornerToCenter-186                                (1, 1000, 4)               0
FasterRCNN.box_to_center
---------------------------------------------------------------------------------------------
NormalizedBoxCenterDecoder-187                               (80, 1000, 4)               0
FasterRCNN.box_decoder
---------------------------------------------------------------------------------------------Conv2D-188                         (1000, 512, 14, 14)          524288BatchNorm-189                         (1000, 512, 14, 14)            2048Activation-190                         (1000, 512, 14, 14)               0Conv2D-191                           (1000, 512, 7, 7)         2359296BatchNorm-192                           (1000, 512, 7, 7)            2048Activation-193                           (1000, 512, 7, 7)               0Conv2D-194                          (1000, 2048, 7, 7)         1048576BatchNorm-195                          (1000, 2048, 7, 7)            8192Conv2D-196                          (1000, 2048, 7, 7)         2097152BatchNorm-197                          (1000, 2048, 7, 7)            8192Activation-198                          (1000, 2048, 7, 7)               0BottleneckV1b-199                          (1000, 2048, 7, 7)               0Conv2D-200                           (1000, 512, 7, 7)         1048576BatchNorm-201                           (1000, 512, 7, 7)            2048Activation-202                           (1000, 512, 7, 7)               0Conv2D-203                           (1000, 512, 7, 7)         2359296BatchNorm-204                           (1000, 512, 7, 7)            2048Activation-205                           (1000, 512, 7, 7)               0Conv2D-206                          (1000, 2048, 7, 7)         1048576BatchNorm-207                          (1000, 2048, 7, 7)            8192Activation-208                          (1000, 2048, 7, 7)               0BottleneckV1b-209                          (1000, 2048, 7, 7)               0Conv2D-210                           (1000, 512, 7, 7)         1048576BatchNorm-211                           (1000, 512, 7, 7)            2048Activation-212                           (1000, 512, 7, 7)               0Conv2D-213                           (1000, 512, 7, 7)         2359296BatchNorm-214                           (1000, 512, 7, 7)            2048Activation-215                           (1000, 512, 7, 7)               0Conv2D-216                          (1000, 2048, 7, 7)         1048576BatchNorm-217                          (1000, 2048, 7, 7)            8192Activation-218                          (1000, 2048, 7, 7)               0BottleneckV1b-219                          (1000, 2048, 7, 7)               0
MaskRCNN.top_features
---------------------------------------------------------------------------------------------Conv2DTranspose-220                         (1000, 256, 14, 14)         2097408Conv2D-221                          (1000, 80, 14, 14)           20560Mask-222                       (1, 1000, 80, 14, 14)               0
MaskRCNN.mask
---------------------------------------------------------------------------------------------MaskRCNN-223  (1, 1000, 1), (1, 1000, 1), (1, 1000, 4), (1, 1000, 14, 14)               0
================================================================================
Parameters in forward computation graph, duplicate includedTotal params: 51986156Trainable params: 50927468Non-trainable params: 1058688
Shared params in forward computation graph: 14987264
Unique parameters in model: 36998892
--------------------------------------------------------------------------------

?

總結

以上是生活随笔為你收集整理的mask rcnn网络结构笔记的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。