2021年大数据Flink(三十七):Table与SQL 案例四
生活随笔
收集整理的這篇文章主要介紹了
2021年大数据Flink(三十七):Table与SQL 案例四
小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
目錄
案例四
需求
代碼實現
案例四
需求
從Kafka中消費數據并過濾出狀態為success的數據再寫入到Kafka
{"user_id": "1", "page_id":"1", "status": "success"}{"user_id": "1", "page_id":"1", "status": "success"}{"user_id": "1", "page_id":"1", "status": "success"}{"user_id": "1", "page_id":"1", "status": "success"}{"user_id": "1", "page_id":"1", "status": "fail"}
/export/server/kafka/bin/kafka-topics.sh --create --zookeeper node1:2181 --replication-factor 2 --partitions 3 --topic input_kafka/export/server/kafka/bin/kafka-topics.sh --create --zookeeper node1:2181 --replication-factor 2 --partitions 3 --topic output_kafka/export/server/kafka/bin/kafka-console-producer.sh --broker-list node1:9092 --topic input_kafka/export/server/kafka/bin/kafka-console-consumer.sh --bootstrap-server node1:9092 --topic output_kafka --from-beginning
???????代碼實現
Apache Flink 1.12 Documentation: Table API & SQL
Apache Flink 1.12 Documentation: Apache Kafka SQL Connector
package cn.it.sql;import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.TableResult;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.types.Row;/*** Author lanson* Desc*/
public class FlinkSQL_Table_Demo06 {public static void main(String[] args) throws Exception {//1.準備環境StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();StreamTableEnvironment tEnv = StreamTableEnvironment.create(env);//2.SourceTableResult inputTable = tEnv.executeSql("CREATE TABLE input_kafka (\n" +" ?`user_id` BIGINT,\n" +" ?`page_id` BIGINT,\n" +" ?`status` STRING\n" +") WITH (\n" +" ?'connector' = 'kafka',\n" +" ?'topic' = 'input_kafka',\n" +" ?'properties.bootstrap.servers' = 'node1:9092',\n" +" ?'properties.group.id' = 'testGroup',\n" +" ?'scan.startup.mode' = 'latest-offset',\n" +" ?'format' = 'json'\n" +")");TableResult outputTable = tEnv.executeSql("CREATE TABLE output_kafka (\n" +" ?`user_id` BIGINT,\n" +" ?`page_id` BIGINT,\n" +" ?`status` STRING\n" +") WITH (\n" +" ?'connector' = 'kafka',\n" +" ?'topic' = 'output_kafka',\n" +" ?'properties.bootstrap.servers' = 'node1:9092',\n" +" ?'format' = 'json',\n" +" ?'sink.partitioner' = 'round-robin'\n" +")");String sql = "select " +"user_id," +"page_id," +"status " +"from input_kafka " +"where status = 'success'";Table ResultTable = tEnv.sqlQuery(sql);DataStream<Tuple2<Boolean, Row>> resultDS = tEnv.toRetractStream(ResultTable, Row.class);resultDS.print();tEnv.executeSql("insert into output_kafka select * from "+ResultTable);//7.excuteenv.execute();}}
總結
以上是生活随笔為你收集整理的2021年大数据Flink(三十七):Table与SQL 案例四的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 2021年大数据Flink(三十六):
- 下一篇: 2021年大数据Flink(三十八):