莫烦Matplotlib可视化第三章画图种类代码学习
生活随笔
收集整理的這篇文章主要介紹了
莫烦Matplotlib可视化第三章画图种类代码学习
小編覺得挺不錯(cuò)的,現(xiàn)在分享給大家,幫大家做個(gè)參考.
3.1散點(diǎn)圖
import matplotlib.pyplot as plt import numpy as npn = 1024 X = np.random.normal(0,1,n) Y = np.random.normal(0,1,n) T = np.arctan2(Y,X) #用于計(jì)算顏色plt.scatter(X,Y,s=75,c=T,alpha=0.5)#alpha是透明度 #plt.scatter(np.arange(5),np.arange(5)) #一條線的散點(diǎn)圖plt.xlim((-1.5,1.5)) plt.ylim((-1.5,1.5)) plt.xticks(()) #把x坐標(biāo)刻度去掉 plt.yticks(()) plt.show()3.2柱狀圖
import matplotlib.pyplot as plt import numpy as npn = 12 #柱狀圖個(gè)數(shù) X = np.arange(n) Y1 = (1-X/float(n))*np.random.uniform(0.5,1.0,n) Y2 = (1-X/float(n))*np.random.uniform(0.5,1.0,n)plt.bar(X,+Y1,facecolor = '#9999ff',edgecolor = 'white') plt.bar(X,-Y2,facecolor = '#ff9999',edgecolor = 'white')for x,y in zip(X,Y1):plt.text(x+0.4,y+0.05,'%.2f'%y,ha = 'center',va = 'bottom')#+0.4,+0.05是為了標(biāo)注不太擁擠,ha是橫向?qū)R,va是縱向?qū)Rfor x,y in zip(X,-Y2):plt.text(x+0.4,y-0.05,'-%.2f'%y,ha = 'center',va = 'top')plt.xlim(-.5,n) plt.xticks(()) plt.ylim(-1.25,1.25) plt.yticks(())plt.show()3.3Contours等高線圖
import matplotlib.pyplot as plt import numpy as npdef f(x,y):return (1 + x /2 + x**5 + y**3)*np.exp(-x**2-y**2) #隨機(jī)高度公式n = 256 x = np.linspace(-3,3,n) y = np.linspace(-3,3,n) X,Y = np.meshgrid(x,y) #網(wǎng)格的輸入()等高線地圖是個(gè)網(wǎng)格plt.contourf(X,Y,f(X,Y),8,alpha = 0.75,cmap = plt.cm.hot) #plt.cm.hot是將數(shù)值轉(zhuǎn)換為顏色,8代表背景分成n+2類 C = plt.contour(X,Y,f(X,Y),8,colors='black',linewidths=.5) #等高線的繪制,8代表分成n+2類(多少個(gè)等高線) plt.clabel(C,inline=True,fontsize = 10) #標(biāo)簽plt.xticks(()) plt.yticks(()) plt.show()3.4 image圖片
import matplotlib.pyplot as plt import numpy as np# image data a = np.array([0.313660827978, 0.365348418405, 0.423733120134,0.365348418405, 0.439599930621, 0.525083754405,0.423733120134, 0.525083754405, 0.651536351379]).reshape(3,3)plt.imshow(a, interpolation='nearest', cmap='bone', origin='lower') #lower是遞增,upper是遞減 plt.colorbar(shrink=.92) #壓縮了到原來的0.92plt.xticks(()) plt.yticks(()) plt.show()3.5 3D數(shù)據(jù)
import matplotlib.pyplot as plt import numpy as np from mpl_toolkits.mplot3d import Axes3Dfig = plt.figure() ax = Axes3D(fig) #3D坐標(biāo)軸X = np.arange(-4,4,0.25) Y = np.arange(-4,4,0.25) X,Y = np.meshgrid(X,Y) R = np.sqrt(X**2+Y**2) Z = np.sin(R)ax.plot_surface(X,Y,Z,rstride=1,cstride=1,cmap=plt.get_cmap('rainbow')) """ ============= ================================================Argument Description============= ================================================*X*, *Y*, *Z* Data values as 2D arrays*rstride* Array row stride (step size), defaults to 10*cstride* Array column stride (step size), defaults to 10*color* Color of the surface patches*cmap* A colormap for the surface patches.*facecolors* Face colors for the individual patches*norm* An instance of Normalize to map values to colors*vmin* Minimum value to map*vmax* Maximum value to map*shade* Whether to shade the facecolors============= ================================================ """ ax.contourf(X,Y,Z,zdir='z',offset=-2,cmap = 'rainbow') #等高線 ax.set_zlim(-2,2)plt.show()總結(jié)
以上是生活随笔為你收集整理的莫烦Matplotlib可视化第三章画图种类代码学习的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 梦到乌龟和青蛙是什么意思周公解梦
- 下一篇: 莫烦Matplotlib可视化第四章多图