日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

Pytorch构建模型的3种方法

發布時間:2023/11/29 编程问答 27 豆豆
生活随笔 收集整理的這篇文章主要介紹了 Pytorch构建模型的3种方法 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

這個地方一直是我思考的地方!因為學的代碼太多了,構建的模型各有不同,這里記錄一下!
可以使用以下3種方式構建模型:

1,繼承nn.Module基類構建自定義模型。

2,使用nn.Sequential按層順序構建模型。

3,繼承nn.Module基類構建模型并輔助應用模型容器進行封裝(nn.Sequential,nn.ModuleList,nn.ModuleDict)。

其中 第1種方式最為常見,第2種方式最簡單,第3種方式最為靈活也較為復雜。

推薦使用第1種方式構建模型。

頭文件:

import torch from torch import nn

一,繼承nn.Module基類構建自定義模型

以下是繼承nn.Module基類構建自定義模型的一個范例。模型中的用到的層一般在__init__函數中定義,然后在forward方法中定義模型的正向傳播邏輯。

class Net(nn.Module):def __init__(self):super(Net, self).__init__()self.conv1 = nn.Conv2d(in_channels=3,out_channels=32,kernel_size = 3)self.pool1 = nn.MaxPool2d(kernel_size = 2,stride = 2)self.conv2 = nn.Conv2d(in_channels=32,out_channels=64,kernel_size = 5)self.pool2 = nn.MaxPool2d(kernel_size = 2,stride = 2)self.dropout = nn.Dropout2d(p = 0.1)self.adaptive_pool = nn.AdaptiveMaxPool2d((1,1))self.flatten = nn.Flatten()self.linear1 = nn.Linear(64,32)self.relu = nn.ReLU()self.linear2 = nn.Linear(32,1)self.sigmoid = nn.Sigmoid()def forward(self,x):x = self.conv1(x)x = self.pool1(x)x = self.conv2(x)x = self.pool2(x)x = self.dropout(x)x = self.adaptive_pool(x)x = self.flatten(x)x = self.linear1(x)x = self.relu(x)x = self.linear2(x)y = self.sigmoid(x)return ynet = Net() print(net)

二,使用nn.Sequential按層順序構建模型

使用nn.Sequential按層順序構建模型無需定義forward方法。僅僅適合于簡單的模型。

以下是使用nn.Sequential搭建模型的一些等價方法。

1,利用add_module方法

net = nn.Sequential() net.add_module("conv1",nn.Conv2d(in_channels=3,out_channels=32,kernel_size = 3)) net.add_module("pool1",nn.MaxPool2d(kernel_size = 2,stride = 2)) net.add_module("conv2",nn.Conv2d(in_channels=32,out_channels=64,kernel_size = 5)) net.add_module("pool2",nn.MaxPool2d(kernel_size = 2,stride = 2)) net.add_module("dropout",nn.Dropout2d(p = 0.1)) net.add_module("adaptive_pool",nn.AdaptiveMaxPool2d((1,1))) net.add_module("flatten",nn.Flatten()) net.add_module("linear1",nn.Linear(64,32)) net.add_module("relu",nn.ReLU()) net.add_module("linear2",nn.Linear(32,1)) net.add_module("sigmoid",nn.Sigmoid())print(net)

2,利用變長參數

這種方式構建時不能給每個層指定名稱。

net = nn.Sequential(nn.Conv2d(in_channels=3,out_channels=32,kernel_size = 3),nn.MaxPool2d(kernel_size = 2,stride = 2),nn.Conv2d(in_channels=32,out_channels=64,kernel_size = 5),nn.MaxPool2d(kernel_size = 2,stride = 2),nn.Dropout2d(p = 0.1),nn.AdaptiveMaxPool2d((1,1)),nn.Flatten(),nn.Linear(64,32),nn.ReLU(),nn.Linear(32,1),nn.Sigmoid() )print(net)

3,利用OrderedDict

from collections import OrderedDictnet = nn.Sequential(OrderedDict([("conv1",nn.Conv2d(in_channels=3,out_channels=32,kernel_size = 3)),("pool1",nn.MaxPool2d(kernel_size = 2,stride = 2)),("conv2",nn.Conv2d(in_channels=32,out_channels=64,kernel_size = 5)),("pool2",nn.MaxPool2d(kernel_size = 2,stride = 2)),("dropout",nn.Dropout2d(p = 0.1)),("adaptive_pool",nn.AdaptiveMaxPool2d((1,1))),("flatten",nn.Flatten()),("linear1",nn.Linear(64,32)),("relu",nn.ReLU()),("linear2",nn.Linear(32,1)),("sigmoid",nn.Sigmoid())])) print(net)

三,繼承nn.Module基類構建模型并輔助應用模型容器進行封裝

當模型的結構比較復雜時,我們可以應用模型容器(nn.Sequential,nn.ModuleList,nn.ModuleDict)對模型的部分結構進行封裝。

這樣做會讓模型整體更加有層次感,有時候也能減少代碼量。

注意,在下面的范例中我們每次僅僅使用一種模型容器,但實際上這些模型容器的使用是非常靈活的,可以在一個模型中任意組合任意嵌套使用。

1,nn.Sequential作為模型容器

class Net(nn.Module):def __init__(self):super(Net, self).__init__()self.conv = nn.Sequential(nn.Conv2d(in_channels=3,out_channels=32,kernel_size = 3),nn.MaxPool2d(kernel_size = 2,stride = 2),nn.Conv2d(in_channels=32,out_channels=64,kernel_size = 5),nn.MaxPool2d(kernel_size = 2,stride = 2),nn.Dropout2d(p = 0.1),nn.AdaptiveMaxPool2d((1,1)))self.dense = nn.Sequential(nn.Flatten(),nn.Linear(64,32),nn.ReLU(),nn.Linear(32,1),nn.Sigmoid())def forward(self,x):x = self.conv(x)y = self.dense(x)return y net = Net() print(net)

2,nn.ModuleList作為模型容器

class Net(nn.Module):def __init__(self):super(Net, self).__init__()self.layers = nn.ModuleList([nn.Conv2d(in_channels=3,out_channels=32,kernel_size = 3),nn.MaxPool2d(kernel_size = 2,stride = 2),nn.Conv2d(in_channels=32,out_channels=64,kernel_size = 5),nn.MaxPool2d(kernel_size = 2,stride = 2),nn.Dropout2d(p = 0.1),nn.AdaptiveMaxPool2d((1,1)),nn.Flatten(),nn.Linear(64,32),nn.ReLU(),nn.Linear(32,1),nn.Sigmoid()])def forward(self,x):for layer in self.layers:x = layer(x)return x net = Net() print(net)

3,nn.ModuleDict作為模型容器

注意下面中的ModuleDict不能用Python中的字典代替。

class Net(nn.Module):def __init__(self):super(Net, self).__init__()self.layers_dict = nn.ModuleDict({"conv1":nn.Conv2d(in_channels=3,out_channels=32,kernel_size = 3),"pool": nn.MaxPool2d(kernel_size = 2,stride = 2),"conv2":nn.Conv2d(in_channels=32,out_channels=64,kernel_size = 5),"dropout": nn.Dropout2d(p = 0.1),"adaptive":nn.AdaptiveMaxPool2d((1,1)),"flatten": nn.Flatten(),"linear1": nn.Linear(64,32),"relu":nn.ReLU(),"linear2": nn.Linear(32,1),"sigmoid": nn.Sigmoid()})def forward(self,x):layers = ["conv1","pool","conv2","pool","dropout","adaptive","flatten","linear1","relu","linear2","sigmoid"]for layer in layers:x = self.layers_dict[layer](x)return x net = Net() print(net) 創作挑戰賽新人創作獎勵來咯,堅持創作打卡瓜分現金大獎

總結

以上是生活随笔為你收集整理的Pytorch构建模型的3种方法的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。