uva11029 - Leading and Trailing
11029 - Leading and Trailing
Time limit: 3.000 seconds?
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=115&page=show_problem&problem=1970
Apart from the novice programmers, all others know that you can’t exactly represent numbers raised to some high power. For example, the C function?pow(125456, 455)?can be represented in double data type format, but you won’t get all the digits of the result. However we can get at least some satisfaction if we could know few of the leading and trailing digits. This is the requirement of this problem.
?
Input
?
The first line of input will be an integer?T<1001, where?T?represents the number of test cases. Each of the next?T?lines contains two positive integers,?n?and?k.?n?will fit in 32 bit integer and?k?will be less than 10000001.
?
Output
?
For each line of input there will be one line of output. It will be of the format LLL…TTT, where LLL represents the first three digits of?n^k?and TTT represents the last three digits of?n^k. You are assured that?n^k?will contain at least 6 digits.
?
?
Sample Input | Output for Sample Input |
2 123456 1 123456 2 | 123...456 152...936 |
大致的題意是:要求n的k次方,但是n和k非常大的時候沒有辦法去求(實際上可以模擬的,暫且不論),所以題目要求的數據只是n的k次方的前三位和后三位。思路:剛看到題便一眼想到用同余摸定理求出后三位,直接求的話太慢,干脆二分冪吧!但是出題人的用意顯然不只是在此,前三位的求法才是卡人的地方,想了半天,最終用double保存n的k次方,相當于縮小了一定倍數,比如,n的k次方等于344958……那么化成double就是0.344……然后取小數點后3位乘以1000即可!code:#include <iostream>
#include <cmath>
#include <cstdio>
using namespace std;
typedef long long ll;
const int mod=1000;
const int M=1000000000;
const int N=0x7fffffff;
ll mi (int n,int m)
{
if (m==1) return n%mod;
if (m%2==0)
return (mi(n,m/2)%1000)*(mi(n,m/2)%mod)%mod;
else
return n*mi(n,m/2)*mi(n,m/2)%mod;
}
double mi2(int n,int m)
{
if (m==0) return 1.0;
double s=mi2(n,m/2)*mi2(n,m/2);
if (m%2)
s*=n;
while (s>M) s/=M;
return s;
}
int main()
{
int t;
cin>>t;
while (t--)
{
int n,k;
cin>>n>>k;
int b=mi(n,k)%mod;
double c=mi2(n,k);
//cout<<c<<endl;
while (c>=1000) c/=10;
int d=c*1000;
while (d>=1000) d/=10;
printf("%d...%03d\n",d,b);
}
}
總結
以上是生活随笔為你收集整理的uva11029 - Leading and Trailing的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 急性输卵管炎有没有臭味
- 下一篇: 博客同步测试