日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當(dāng)前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

ID3和C4.5分类决策树算法 - 数据挖掘算法(7)

發(fā)布時(shí)間:2023/12/2 编程问答 30 豆豆
生活随笔 收集整理的這篇文章主要介紹了 ID3和C4.5分类决策树算法 - 数据挖掘算法(7) 小編覺得挺不錯(cuò)的,現(xiàn)在分享給大家,幫大家做個(gè)參考.
(2017-05-18 銀河統(tǒng)計(jì))

決策樹(Decision Tree)是在已知各種情況發(fā)生概率的基礎(chǔ)上,通過構(gòu)成決策樹來判斷其可行性的決策分析方法,是直觀運(yùn)用概率分析的一種圖解法。由于這種決策分支畫成圖形很像一棵樹的枝干,故稱決策樹。在機(jī)器學(xué)習(xí)中,決策樹是一個(gè)預(yù)測(cè)模型,他代表的是對(duì)象屬性與對(duì)象值之間的一種映射關(guān)系。

決策樹是對(duì)數(shù)據(jù)進(jìn)行分類,以此達(dá)到預(yù)測(cè)的目的。決策樹方法先根據(jù)訓(xùn)練集數(shù)據(jù)形成決策樹,如果該樹不能對(duì)所有對(duì)象給出正確的分類,那么選擇一些例外加入到訓(xùn)練集數(shù)據(jù)中,重復(fù)該過程一直到形成正確的決策集。決策樹代表著決策集的樹形結(jié)構(gòu)。

決策樹由決策結(jié)點(diǎn)、分支和葉子組成。決策樹中最上面的結(jié)點(diǎn)為根結(jié)點(diǎn),每個(gè)分支是一個(gè)新的決策結(jié)點(diǎn),或者是樹的葉子。每個(gè)決策結(jié)點(diǎn)代表一個(gè)問題或決策,通常對(duì)應(yīng)于待分類對(duì)象的屬性。每一個(gè)葉子結(jié)點(diǎn)代表一種可能的分類結(jié)果。沿決策樹從上到下遍歷的過程中,在每個(gè)結(jié)點(diǎn)都會(huì)遇到一個(gè)測(cè)試,對(duì)每個(gè)結(jié)點(diǎn)上問題的不同的測(cè)試輸出導(dǎo)致不同的分支,最后會(huì)到達(dá)一個(gè)葉子結(jié)點(diǎn),這個(gè)過程就是利用決策樹進(jìn)行分類的過程,利用若干個(gè)變量來判斷所屬的類別。

一、決策樹構(gòu)造及其運(yùn)用

1、樹的定義

樹是由節(jié)點(diǎn)和邊兩種元素組成的結(jié)構(gòu)。理解樹,就需要理解幾個(gè)關(guān)鍵詞:根節(jié)點(diǎn)、父節(jié)點(diǎn)、子節(jié)點(diǎn)和葉子節(jié)點(diǎn)。

父節(jié)點(diǎn)和子節(jié)點(diǎn)是相對(duì)的,說白了子節(jié)點(diǎn)由父節(jié)點(diǎn)根據(jù)某一規(guī)則分裂而來,然后子節(jié)點(diǎn)作為新的父親節(jié)點(diǎn)繼續(xù)分裂,直至不能分裂為止。而根節(jié)點(diǎn)是沒有父節(jié)點(diǎn)的節(jié)點(diǎn),即初始分裂節(jié)點(diǎn),葉子節(jié)點(diǎn)是沒有子節(jié)點(diǎn)的節(jié)點(diǎn),如下圖所示:

決策樹利用如上圖所示的樹結(jié)構(gòu)進(jìn)行決策,每一個(gè)非葉子節(jié)點(diǎn)是一個(gè)判斷條件,每一個(gè)葉子節(jié)點(diǎn)是結(jié)論。從跟節(jié)點(diǎn)開始,經(jīng)過多次判斷得出結(jié)論。

2、如何利用樹進(jìn)行決策

從一個(gè)用戶貸款分類例子說起:

銀行希望能夠通過一個(gè)人的信息(包括職業(yè)、年齡、收入、學(xué)歷)去判斷他是否有貸款的意向,從而更有針對(duì)性地完成工作。下表是銀行現(xiàn)在能夠掌握的信息,我們的目標(biāo)是通過對(duì)下面的數(shù)據(jù)進(jìn)行分析建立一個(gè)預(yù)測(cè)用戶貸款一下的模型。

職業(yè) 年齡 收入 學(xué)歷 是否貸款
自由職業(yè) 28 5000 高中
工人 36 5500 高中
工人 42 2800 初中
白領(lǐng) 45 3300 小學(xué)
白領(lǐng) 25 10000 本科
白領(lǐng) 32 8000 碩士
白領(lǐng) 28 13000 博士
自由職業(yè) 21 4000 本科
自由職業(yè) 22 3200 小學(xué)
工人 33 3000 高中
工人 48 4200 小學(xué)

上邊中有4個(gè)客戶的屬性,如何綜合利用這些屬性去判斷用戶的貸款意向?

決策樹的做法是每次選擇一個(gè)屬性進(jìn)行判斷,如果不能得出結(jié)論,繼續(xù)選擇其他屬性進(jìn)行判斷,直到能夠“肯定地”判斷出用戶的類型或者是上述屬性都已經(jīng)使用完畢。比如說我們要判斷一個(gè)客戶的貸款意向,我們可以先根據(jù)客戶的職業(yè)進(jìn)行判斷,如果不能得出結(jié)論,再根據(jù)年齡作判斷,這樣以此類推,直到可以得出結(jié)論為止。

決策樹用樹結(jié)構(gòu)實(shí)現(xiàn)上述的判斷流程,如下圖所示:

上圖所示的是通過輸入用戶的信息,輸出用戶的貸款意向。如果要判斷某一客戶是否有貸款的意向,直接根據(jù)用戶的職業(yè)、收入、年齡以及學(xué)歷就可以分析得出用戶的類型。如某客戶的信息為:{職業(yè)、年齡,收入,學(xué)歷}={工人、39, 1800,小學(xué)},將信息輸入上述決策樹,可以得到下列的分析步驟和結(jié)論。

第一步:根據(jù)該客戶的職業(yè)進(jìn)行判斷,選擇“工人”分支;

第二步:根據(jù)客戶的年齡進(jìn)行選擇,選擇年齡”<=40”這一分支;

第三步:根據(jù)客戶的學(xué)歷進(jìn)行選擇,選擇”小學(xué)”這一分支,得出該客戶無貸款意向的結(jié)論。

3、決策樹的構(gòu)建

從上述步驟可以看出,決策生成過程中有幾個(gè)個(gè)重要的問題:

數(shù)據(jù)如何分割 如何選擇分裂的屬性 什么時(shí)候停止分裂

假如我們已經(jīng)選擇了一個(gè)分裂的屬性,那怎樣對(duì)數(shù)據(jù)進(jìn)行分裂呢?

I、數(shù)據(jù)分割

分裂屬性的數(shù)據(jù)類型分為離散型和連續(xù)性兩種情況,對(duì)于離散型的數(shù)據(jù),按照屬性值進(jìn)行分裂,每個(gè)屬性值對(duì)應(yīng)一個(gè)分裂節(jié)點(diǎn);對(duì)于連續(xù)性屬性,一般性的做法是對(duì)數(shù)據(jù)按照該屬性進(jìn)行排序,再將數(shù)據(jù)分成若干區(qū)間,如[0,10]、[10,20]、[20,30]、…,一個(gè)區(qū)間對(duì)應(yīng)一個(gè)節(jié)點(diǎn),若數(shù)據(jù)的屬性值落入某一區(qū)間則該數(shù)據(jù)就屬于其對(duì)應(yīng)的節(jié)點(diǎn)。

設(shè)有數(shù)據(jù)表如下:

職業(yè) 年齡 是否貸款
白領(lǐng) 30
工人 40
工人 20
學(xué)生 15
學(xué)生 18
白領(lǐng) 42

屬性“職業(yè)”是離散型變量,有三個(gè)取值,分別為白領(lǐng)、工人和學(xué)生,根據(jù)三個(gè)取值對(duì)原始的數(shù)據(jù)進(jìn)行分割,如下表所示:

取值 貸款人數(shù) 不貸款人數(shù)
白領(lǐng) 1 1
工人 0 2
學(xué)生 1 1

上表可以表示成如下的決策樹結(jié)構(gòu):

屬性“年齡”是連續(xù)性變量,這里將數(shù)據(jù)分成三個(gè)區(qū)間,分別是[0,20]、(20,40]、(40,*],則每一個(gè)區(qū)間的分裂結(jié)果如下:

年齡分組 貸款人數(shù) 不貸款人數(shù)
[0 ,20] 1 2
(20,40] 0 2
(40,* ] 1 0

上表可以表示成如下的決策樹結(jié)構(gòu):

II、分裂屬性的選擇

前面介紹了分裂屬性是如何對(duì)數(shù)據(jù)進(jìn)行分割的,那么怎樣選擇分裂的屬性呢?

決策樹采用貪婪思想進(jìn)行分裂,即選擇可以得到最優(yōu)分裂結(jié)果的屬性進(jìn)行分裂。那么怎樣才算是最優(yōu)的分裂結(jié)果?最理想的情況當(dāng)然是能找到一個(gè)屬性剛好能夠?qū)⒉煌悇e分開,但是大多數(shù)情況下分裂很難一步到位,我們希望每一次分裂之后孩子節(jié)點(diǎn)的數(shù)據(jù)盡量”純”,以下圖為例:

從圖例1和圖例2可以明顯看出,屬性2分裂后的子節(jié)點(diǎn)比屬性1分裂后的子節(jié)點(diǎn)更純:屬性1分裂后每個(gè)節(jié)點(diǎn)的兩類的數(shù)量還是相同,跟根節(jié)點(diǎn)的分類結(jié)果相比完全沒有提高;按照屬性2分裂后每個(gè)節(jié)點(diǎn)各類的數(shù)量相差比較大,可以很大概率認(rèn)為第一個(gè)子節(jié)點(diǎn)的輸出結(jié)果為類1,第2個(gè)子節(jié)點(diǎn)的輸出結(jié)果為2。

選擇分裂屬性是要找出能夠使所有子節(jié)點(diǎn)數(shù)據(jù)最純的屬性,決策樹使用信息增益、信息增益率或者基尼值作為選擇屬性的依據(jù)(相關(guān)概念及算法在ID3和C4.5中解釋)。

III、停止分裂的條件

決策樹不可能無限制地生長,總有停止分裂的時(shí)候,最極端的情況是當(dāng)節(jié)點(diǎn)分裂到只剩下一個(gè)數(shù)據(jù)點(diǎn)時(shí)自動(dòng)結(jié)束分裂,但這種情況下樹過于復(fù)雜,而且預(yù)測(cè)的精度不高。一般情況下為了降低決策樹復(fù)雜度和提高預(yù)測(cè)的經(jīng)度,會(huì)適當(dāng)提前終止節(jié)點(diǎn)的分裂

以下是決策樹節(jié)點(diǎn)停止分裂的一般性條件:

a. 最小節(jié)點(diǎn)數(shù):當(dāng)節(jié)點(diǎn)的數(shù)據(jù)量小于一個(gè)指定的數(shù)量時(shí),不繼續(xù)分裂。兩個(gè)原因:一是數(shù)據(jù)量較少時(shí),再做分裂容易強(qiáng)化噪聲數(shù)據(jù)的作用;二是降低樹生長的復(fù)雜性。提前結(jié)束分裂一定程度上有利于降低過擬合的影響b. 熵或者基尼值小于閥值:熵和基尼值的大小表示數(shù)據(jù)的復(fù)雜程度,當(dāng)熵或者基尼值過小時(shí),表示數(shù)據(jù)的純度比較大,如果熵或者基尼值小于一定程度數(shù),節(jié)點(diǎn)停止分裂c. 決策樹的深度達(dá)到指定的條件:節(jié)點(diǎn)的深度可以理解為節(jié)點(diǎn)與決策樹跟節(jié)點(diǎn)的距離,如根節(jié)點(diǎn)的子節(jié)點(diǎn)的深度為1,因?yàn)檫@些節(jié)點(diǎn)與跟節(jié)點(diǎn)的距離為1,子節(jié)點(diǎn)的深度要比父節(jié)點(diǎn)的深度大1。決策樹的深度是所有葉子節(jié)點(diǎn)的最大深度,當(dāng)深度到達(dá)指定的上限大小時(shí),停止分裂d. 所有特征已經(jīng)使用完畢,不能繼續(xù)進(jìn)行分裂:被動(dòng)式停止分裂的條件,當(dāng)已經(jīng)沒有可分的屬性時(shí),直接將當(dāng)前節(jié)點(diǎn)設(shè)置為葉子節(jié)點(diǎn)

IV、決策樹的構(gòu)建方法

根據(jù)決策樹的輸出結(jié)果,決策樹可以分為分類樹和回歸樹,分類樹輸出的結(jié)果為具體的類別,而回歸樹輸出的結(jié)果為一個(gè)確定的數(shù)值。

決策樹的構(gòu)建算法主要有ID3、C4.5、CART三種,其中ID3和C4.5是分類樹,CART是分類回歸樹。本文介紹ID3和C4.5技術(shù),其中ID3是決策樹最基本的構(gòu)建算法,而C4.5和CART是在ID3的基礎(chǔ)上進(jìn)行優(yōu)化的算法。

二、ID3算法

ID3算法最早是由羅斯昆(J.Ross Quinlan)于1975年在悉尼大學(xué)提出的一種分類預(yù)測(cè)算法,算法的核心是“信息熵(Information entropy)”。ID3算法通過計(jì)算每個(gè)屬性的信息增益,認(rèn)為信息增益高的是好屬性,每次劃分選取信息增益最高的屬性為劃分標(biāo)準(zhǔn),重復(fù)這個(gè)過程,直至生成一個(gè)能完美分類訓(xùn)練樣例的決策樹。

1、信息熵

信息論之父 C. E. Shannon 在1948年發(fā)表的論文“通信的數(shù)學(xué)理論(A Mathematical Theory of Communication)”中,Shannon指出,任何信息都存在冗余,冗余大小與信息中每個(gè)符號(hào)(數(shù)字、字母或單詞)的出現(xiàn)概率或者說不確定性有關(guān)。Shannon借鑒了熱力學(xué)的概念,把信息中排除了冗余后的平均信息量稱為“信息熵”,并給出了計(jì)算信息熵的數(shù)學(xué)表達(dá)式。

事件\(a_{_i}\)的信息量\(I(a_{_i})\)可如下度量:

\[I(a_{_i})=p(a_{_i})\times\frac{1}{log_{_2}p(a_{_i})}\]

其中\(p(a_{_i})\)表示事件\(a_{_i}\)發(fā)生的概率。

假設(shè)有n個(gè)互不相容的事件\(a_{_1},a_{_2},a_{_3},\dots.,a_{_n}\),它們中有且僅有一個(gè)發(fā)生,則其平均的信息量可如下度量:

\[I(a_{_1},a_{_2},a_{_3},\dots,a_{_n})=\sum\limits_{i=1}^nI(a_{_i})=\sum\limits_{i=1}^np(a_{_i})\times\frac{1}{log_{_2}p(a_{_i})}=-\sum\limits_{i=1}^np(a_{_i})\times{log_{_2}p(a_{_i})}\]

信息熵是消除不確定性所需信息量的度量,也即未知事件可能含有的信息量。

例如,投擲一枚分幣,正面和反面朝上的概率相對(duì),為\(\frac{1}{2}\),這一隨機(jī)試驗(yàn)所有可能結(jié)果的發(fā)生概率所包含的信息量的大小,即信息熵值為,

\[I(a_{_1},a_{_2})=-\sum\limits_{i=1}^2p(a_{_i})\times{log_{_2}p(a_{_i})}=-(\frac{1}{2}\times log_{_2}\frac{1}{2}+\frac{1}{2}\times log_{_2}\frac{1}{2})=log_{_2}2=1\]

假設(shè)這枚分幣正反面不均勻,一面朝上的概率為0.3,另一面為0.7,信息熵值為,

\[I(a_{_1},a_{_2})=-\sum\limits_{i=1}^2p(a_{_i})\times{log_{_2}p(a_{_i})}=-(0.3\times log_{_2}0.3+0.7\times log_{_2}0.7)=0.8813\]

對(duì)于極端情況,一面朝上的概率為0,另一面為1,信息熵值為,

\[I(a_{_1},a_{_2})=-\sum\limits_{i=1}^2p(a_{_i})\times{log_{_2}p(a_{_i})}=-(0\times log_{_2}0+1\times log_{_2}1)=0\]

式中,對(duì)數(shù)底數(shù)可以為任何數(shù),不同的取值對(duì)應(yīng)了熵的不同單位。通常對(duì)數(shù)的底數(shù)取2,并規(guī)定當(dāng)\(p(a_{_i})=0\)時(shí),

\[I(a_{_i})=p(a_{_i})\times\frac{1}{log_{_2}p(a_{_i})}=0\]

當(dāng)正反面朝上概率相等時(shí),結(jié)果最難猜,信息熵最大;正面朝上概率為0.7、反面朝上概率為0.3時(shí),應(yīng)該猜正面朝上,會(huì)有70%勝算,但信息熵減小;正面朝上概率為1、反面朝上概率為0時(shí),正面一定朝上,這時(shí)信息熵為0。

2、ID3算法中信息量大小的度量

在運(yùn)用ID3算法進(jìn)行決策樹分類過程中,假設(shè)D是訓(xùn)練樣本集合,則D的熵(entropy)表示為:

\[info(D)=-\sum\limits_{i=1}^mp_{_i}\times{log_{_2}(p_{_i})}\]

其中\(p_{_i}\)表示第i個(gè)類別在整個(gè)訓(xùn)練元組中出現(xiàn)的概率,可以用屬于此類別元素的數(shù)量除以訓(xùn)練元組元素總數(shù)量作為估計(jì)。熵的實(shí)際意義表示是D中元組的類標(biāo)號(hào)所需要的平均信息量。

現(xiàn)對(duì)訓(xùn)練樣本集合D按屬性A進(jìn)行劃分,則A對(duì)D劃分的期望信息為:

\[info_{_A}(D)=-\sum\limits_{j=1}^m\frac{|D_{_j}|}{|D|}\times{info(D_{_j})}\]

式中|D|為練樣本量,\(D_{_j}\)為屬性A的不同水平樣本數(shù),\(info(D_{_j})\)為屬性A的不同水平的熵。

而信息增益為,

\[gain(A)=info(D)-info_{_A}(D)\]

3、ID3算法案例

學(xué)習(xí)數(shù)據(jù)挖掘技術(shù)的最好方法是找到詳細(xì)案例和看懂計(jì)算過程。有時(shí)算法雖然不難,但公式表達(dá)很難理解。

案例:SNS社區(qū)中不真實(shí)賬號(hào)檢測(cè),使用ID3算法構(gòu)造決策樹。

日志密度/L好友密度/F真實(shí)頭像/H真實(shí)賬戶/R
S S NO NO
S L YES YES
L M YES YES
M M YES YES
L M YES YES
M L NO YES
M S NO NO
L M NO YES
M S NO YES
S S YES NO

表中S、M和L分別表示小、中和大。

設(shè)L、F、H和R表示日志密度、好友密度、是否使用真實(shí)頭像和賬號(hào)是否真實(shí),試用ID3算法構(gòu)造決策樹。

解:設(shè)D為10個(gè)樣本集,其中決策屬性(真實(shí)賬戶/R)有7個(gè)YES、3個(gè)NO。決策屬性信息熵為:

\[info(D)=-\sum\limits_{i=1}^mp_{_i}\times{log_{_2}(p_{_i})}=-(\frac{7}{10}log_{_2}\frac{7}{10}+\frac{3}{10}log_{_2}\frac{3}{10})=0.8813\]

日志密度屬性期望信息熵為:

\[\small{info_{_L}(D)=-\sum\limits_{j=1}^m\frac{|D_{_j}|}{|D|}\times{info(D_{_j})}=-[\frac{3}{10}\times{(0\times log_{_2}0+1\times log_{_2}1)}+\frac{4}{10}\times{(\frac{1}{4}\times log_{_2}\frac{1}{4}+\frac{3}{4}\times log_{_2}\frac{3}{4})}+\frac{3}{10}\times{(\frac{2}{3}\times log_{_2}\frac{2}{3}+\frac{1}{3}\times log_{_2}\frac{1}{3})}]=0.6}\]

好友密度屬性期望信息熵為:

\[\small{info_{_F}(D)=-\sum\limits_{j=1}^m\frac{|D_{_j}|}{|D|}\times{info(D_{_j})}=-[\frac{2}{10}\times{(0\times log_{_2}0+1\times log_{_2}1)}+\frac{4}{10}\times{(\frac{1}{4}\times log_{_2}\frac{1}{4}+\frac{3}{4}\times log_{_2}\frac{3}{4})}+\frac{4}{10}\times{(0\times log_{_2}0+1\times log_{_2}1)}]=0.3245}\]

真實(shí)頭像屬性期望信息熵為:

\[\small{info_{_H}(D)=-\sum\limits_{j=1}^m\frac{|D_{_j}|}{|D|}\times{info(D_{_j})}=-[\frac{5}{10}\times{(\frac{2}{5}\times log_{_2}\frac{2}{5}+\frac{3}{5}\times log_{_2}\frac{3}{5})}+\frac{5}{10}\times{(\frac{1}{5}\times log_{_2}\frac{1}{5}+\frac{4}{5}\times log_{_2}\frac{4}{5})}]=0.8464}\]

日志密度信息增益: \(gain(L)=info(D) - info_{_L}(D) = 0.8813 – 0.6 = 0.2813\)
好友密度信息增益: \(gain(F)=info(D) - info_{_F}(D) = 0.8813 – 0.3245 = 0.5568\)
真實(shí)頭像信息增益: \(gain(H)=info(D) - info_{_H}(D) = 0.8813 – 0.8464 = 0.0349\)

因?yàn)楹糜衙芏?#xff08;F)具有最大的信息增益(好友密度信息熵最小,最易分割),所以第一次分裂選擇好友密度F為分裂屬性,分裂后的結(jié)果如下:

圖中按好友密度(F)分割樹,水平M和L為單一水平?jīng)Q策屬性分支(樹葉),沒有必要繼續(xù)分割。水平S包含決策屬性的不同水平,應(yīng)該繼續(xù)分割。待分割決策信息表為,

日志密度/L真實(shí)頭像/H真實(shí)賬戶/R
S NO NO
M NO NO
M NO YES
S YES NO

此時(shí),設(shè)D為4個(gè)樣本集,其中決策屬性(真實(shí)賬戶/R)有1個(gè)YES、3個(gè)NO。決策屬性信息熵為:

\[info(D)=-\sum\limits_{i=1}^mp_{_i}\times{log_{_2}(p_{_i})}=-(\frac{1}{4}log_{_2}\frac{1}{4}+\frac{3}{4}log_{_2}\frac{3}{4})=0.8113\]

日志密度屬性期望信息熵為:

\[\small{info_{_L}(D)=-\sum\limits_{j=1}^m\frac{|D_{_j}|}{|D|}\times{info(D_{_j})}=-[\frac{2}{4}\times{(\frac{1}{2}\times log_{_2}\frac{1}{2}+\frac{1}{2}\times log_{_2}\frac{1}{2})}+\frac{2}{4}\times{(0\times log_{_2}0+1\times log_{_2}1)}]=0.5}\]

真實(shí)頭像屬性期望信息熵為:

\[\small{info_{_H}(D)=-\sum\limits_{j=1}^m\frac{|D_{_j}|}{|D|}\times{info(D_{_j})}=-[\frac{3}{4}\times{(\frac{2}{3}\times log_{_2}\frac{2}{3}+\frac{1}{3}\times log_{_2}\frac{1}{3})}+\frac{1}{4}\times{(0\times log_{_2}0+1\times log_{_2}1)}]=0.6887}\]

日志密度信息增益: \(gain(L)=info(D) - info_{_L}(D) = 0.8113 – 0.5 = 0.2813\)
真實(shí)頭像信息增益: \(gain(H)=info(D) - info_{_H}(D) = 0.8113 – 0.8464 = 0.6887\)

因?yàn)槿罩久芏?#xff08;L)具有最大的信息增益,所以第二次分裂選擇日志密度(L)為分裂屬性,分裂后的結(jié)果如下圖表示:

圖中,日志密度為M時(shí),無法做出判斷、也無法繼續(xù)進(jìn)行分裂。至此,決策樹構(gòu)建完畢。

設(shè)某人在SNS社區(qū)中的好友密度為L或M,無論其它屬性水平取值如何,均可判定為是真實(shí)賬戶;如果某人在SNS社區(qū)中的好友密度為S、日志密度也為S,可判定為是虛假賬戶;如果某人在SNS社區(qū)中的好友密度為S、日志密度為M,應(yīng)根據(jù)真實(shí)頭像信息做出判斷,由于樣本過少,無法繼續(xù)進(jìn)行。

三、C4.5算法

ID3算法是決策樹的一個(gè)經(jīng)典的構(gòu)造算法,但I(xiàn)D3算法也存在一些問題,比較突出的缺陷是信息增益的計(jì)算依賴于特征水平較多的特征,而屬性取值最多的屬性并不一定最優(yōu)。例如,投擲一枚分幣和一個(gè)色子這兩個(gè)隨機(jī)試驗(yàn),所有可能的期望信息熵為,

\(entropy(擲分幣)=-(\frac{1}{2}\times log_{_2}\frac{1}{2}+\frac{1}{2}\times log_{_2}\frac{1}{2})=log_{_2}2=1\)
\(\small{entropy(擲色子)=-(\frac{1}{6}\times log_{_2}\frac{1}{2}+\frac{1}{6}\times log_{_2}\frac{1}{2}+\frac{1}{6}\times log_{_2}\frac{1}{2}+\frac{1}{6}\times log_{_2}\frac{1}{2}+\frac{1}{6}\times log_{_2}\frac{1}{2}+\frac{1}{6}\times log_{_2}\frac{1}{2})=log_{_2}6\approx 2.585}\)

通過信息熵的定義可知,在給定特征水平數(shù)條件下,各水平發(fā)生概率相等(如擲篩子6個(gè)數(shù)字發(fā)生的概率都為\(\frac{1}{6}\)),期望信息熵最大。所以,當(dāng)決策信息中某個(gè)變量特征水平較多時(shí),ID3算法按信息增益指標(biāo)往往會(huì)選擇該變量或?qū)傩宰鰹榉指罟?jié)點(diǎn)。

1、C4.5算法的兩個(gè)基本公式

I、“分裂信息”公式

C4.5算法首先定義了“分裂信息”,其定義可以表示成:

\[split\_info_{_A}(D)=-\sum\limits_{j=1}^v\frac{|D_{_j}|}{|D|}\times{log_{_2}(\frac{|D_{_j}|}{|D|})}\]

式中,各符號(hào)意義與ID3算法相同,符號(hào)|D|為訓(xùn)練樣本數(shù)、\(|D_{_j}|\)為屬性A各水平樣本數(shù)。

II、增益率

\[gain\_ratio(A)=\frac{ratio_{_A}(D)}{split\_info_{_A}(D)}\]

III、分裂信息和增益率計(jì)算實(shí)例

在ID3算法案例中(SNS社區(qū)中不真實(shí)賬號(hào)檢測(cè)),決策屬性信息熵為:

\[info(D)=-\sum\limits_{i=1}^mp_{_i}\times{log_{_2}(p_{_i})}=-(\frac{1}{4}log_{_2}\frac{1}{4}+\frac{3}{4}log_{_2}\frac{3}{4})=0.8113\]

把決策屬性替換成其它屬性,即為各屬性分裂信息熵。

日志密度分裂信息:

\[\small{split\_info_{_L}(D)=-\sum\limits_{j=1}^3\frac{|D_{_j}|}{|D|}\times{log_{_2}(\frac{|D_{_j}|}{|D|})}=-[\frac{3}{10}\times log_{_2}\frac{3}{10}+\frac{4}{10}\times log_{_2}\frac{4}{10}+\frac{3}{10}\times log_{_2}\frac{3}{10}]=1.57095}\]

好友密度分裂信息:

\[\small{split\_info_{_F}(D)=-\sum\limits_{j=1}^3\frac{|D_{_j}|}{|D|}\times{log_{_2}(\frac{|D_{_j}|}{|D|})}=-[\frac{4}{10}\times log_{_2}\frac{4}{10}+\frac{4}{10}\times log_{_2}\frac{4}{10}+\frac{2}{10}\times log_{_2}\frac{2}{10}]=1.5219}\]

真實(shí)頭像分裂信息:

\[\small{split\_info_{_H}(D)=-\sum\limits_{j=1}^2\frac{|D_{_j}|}{|D|}\times{log_{_2}(\frac{|D_{_j}|}{|D|})}=-[\frac{5}{10}\times log_{_2}\frac{5}{10}+\frac{5}{10}\times log_{_2}\frac{5}{10}]=1}\]

由前面ID3算法已知,

日志密度信息增益: \(gain(L)=info(D) - info_{_L}(D) = 0.8813 – 0.6 = 0.2813\)
好友密度信息增益: \(gain(F)=info(D) - info_{_F}(D) = 0.8813 – 0.3245 = 0.5568\)
真實(shí)頭像信息增益: \(gain(H)=info(D) - info_{_H}(D) = 0.8813 – 0.8464 = 0.0349\)

各屬性增益率為,

日志密度信息增益率:\[gain\_ratio(L)=\frac{ratio_{_L}(D)}{split\_info_{_L}(D)}=\frac{0.2813}{1.57095}=0.1791\]

好友密度信息增益率: \[gain\_ratio(F)=\frac{ratio_{_F}(D)}{split\_info_{_F}(D)}=\frac{0.5568}{1.5219}=0.3659\]

真實(shí)頭像信息增益率: \[gain\_ratio(H)=\frac{ratio_{_H}(D)}{split\_info_{_H}(D)}=\frac{0.0349}{1}=0.0349\]

由上述計(jì)算結(jié)果可知“好友密度”在屬性中具有最大的信息增益比,取“好友密度”為分割屬性,引出一個(gè)分枝,樣本按此劃分。對(duì)引出的每一個(gè)分枝再用此分類法進(jìn)行分類,再引出分枝。

某屬性的信息增益除以分裂信息,消除了屬性水平數(shù)量多少的影響,使得分裂屬性的選擇更加合理。

四、樣例代碼

樣例采用計(jì)算機(jī)購買意向信息表,

年齡 收入 學(xué)生 信譽(yù) 買計(jì)算機(jī) 計(jì)數(shù)
不買 64
優(yōu) 不買 64
128
60
64
優(yōu) 不買 64
優(yōu) 64
不買 128
64
132
優(yōu) 64
優(yōu) 32
32
優(yōu) 不買 63
優(yōu) 1

該訓(xùn)練樣本集為單項(xiàng)分組數(shù)據(jù),為了便于程序代碼處理,應(yīng)將分組數(shù)據(jù)還原為未分組數(shù)據(jù),并將中文信息轉(zhuǎn)換為英文字符。

No.AgeIncomeStudentReputationBuy Computer
1YHNGN
2YHNGN
3YHNGN
4YHNGN
5YHNGN
6YHNGN
7YHNGN
8YHNGN
9YHNGN
10YHNGN
11YHNGN
12YHNGN
13YHNGN
14YHNGN
15YHNGN
16YHNGN
17YHNGN
18YHNGN
19YHNGN
20YHNGN
21YHNGN
22YHNGN
23YHNGN
24YHNGN
25YHNGN
26YHNGN
27YHNGN
28YHNGN
29YHNGN
30YHNGN
31YHNGN
32YHNGN
33YHNGN
34YHNGN
35YHNGN
36YHNGN
37YHNGN
38YHNGN
39YHNGN
40YHNGN
41YHNGN
42YHNGN
43YHNGN
44YHNGN
45YHNGN
46YHNGN
47YHNGN
48YHNGN
49YHNGN
50YHNGN
51YHNGN
52YHNGN
53YHNGN
54YHNGN
55YHNGN
56YHNGN
57YHNGN
58YHNGN
59YHNGN
60YHNGN
61YHNGN
62YHNGN
63YHNGN
64YHNGN
65YHNEN
66YHNEN
67YHNEN
68YHNEN
69YHNEN
70YHNEN
71YHNEN
72YHNEN
73YHNEN
74YHNEN
75YHNEN
76YHNEN
77YHNEN
78YHNEN
79YHNEN
80YHNEN
81YHNEN
82YHNEN
83YHNEN
84YHNEN
85YHNEN
86YHNEN
87YHNEN
88YHNEN
89YHNEN
90YHNEN
91YHNEN
92YHNEN
93YHNEN
94YHNEN
95YHNEN
96YHNEN
97YHNEN
98YHNEN
99YHNEN
100YHNEN
101YHNEN
102YHNEN
103YHNEN
104YHNEN
105YHNEN
106YHNEN
107YHNEN
108YHNEN
109YHNEN
110YHNEN
111YHNEN
112YHNEN
113YHNEN
114YHNEN
115YHNEN
116YHNEN
117YHNEN
118YHNEN
119YHNEN
120YHNEN
121YHNEN
122YHNEN
123YHNEN
124YHNEN
125YHNEN
126YHNEN
127YHNEN
128YHNEN
129MHNGY
130MHNGY
131MHNGY
132MHNGY
133MHNGY
134MHNGY
135MHNGY
136MHNGY
137MHNGY
138MHNGY
139MHNGY
140MHNGY
141MHNGY
142MHNGY
143MHNGY
144MHNGY
145MHNGY
146MHNGY
147MHNGY
148MHNGY
149MHNGY
150MHNGY
151MHNGY
152MHNGY
153MHNGY
154MHNGY
155MHNGY
156MHNGY
157MHNGY
158MHNGY
159MHNGY
160MHNGY
161MHNGY
162MHNGY
163MHNGY
164MHNGY
165MHNGY
166MHNGY
167MHNGY
168MHNGY
169MHNGY
170MHNGY
171MHNGY
172MHNGY
173MHNGY
174MHNGY
175MHNGY
176MHNGY
177MHNGY
178MHNGY
179MHNGY
180MHNGY
181MHNGY
182MHNGY
183MHNGY
184MHNGY
185MHNGY
186MHNGY
187MHNGY
188MHNGY
189MHNGY
190MHNGY
191MHNGY
192MHNGY
193MHNGY
194MHNGY
195MHNGY
196MHNGY
197MHNGY
198MHNGY
199MHNGY
200MHNGY
201MHNGY
202MHNGY
203MHNGY
204MHNGY
205MHNGY
206MHNGY
207MHNGY
208MHNGY
209MHNGY
210MHNGY
211MHNGY
212MHNGY
213MHNGY
214MHNGY
215MHNGY
216MHNGY
217MHNGY
218MHNGY
219MHNGY
220MHNGY
221MHNGY
222MHNGY
223MHNGY
224MHNGY
225MHNGY
226MHNGY
227MHNGY
228MHNGY
229MHNGY
230MHNGY
231MHNGY
232MHNGY
233MHNGY
234MHNGY
235MHNGY
236MHNGY
237MHNGY
238MHNGY
239MHNGY
240MHNGY
241MHNGY
242MHNGY
243MHNGY
244MHNGY
245MHNGY
246MHNGY
247MHNGY
248MHNGY
249MHNGY
250MHNGY
251MHNGY
252MHNGY
253MHNGY
254MHNGY
255MHNGY
256MHNGY
257LMNGY
258LMNGY
259LMNGY
260LMNGY
261LMNGY
262LMNGY
263LMNGY
264LMNGY
265LMNGY
266LMNGY
267LMNGY
268LMNGY
269LMNGY
270LMNGY
271LMNGY
272LMNGY
273LMNGY
274LMNGY
275LMNGY
276LMNGY
277LMNGY
278LMNGY
279LMNGY
280LMNGY
281LMNGY
282LMNGY
283LMNGY
284LMNGY
285LMNGY
286LMNGY
287LMNGY
288LMNGY
289LMNGY
290LMNGY
291LMNGY
292LMNGY
293LMNGY
294LMNGY
295LMNGY
296LMNGY
297LMNGY
298LMNGY
299LMNGY
300LMNGY
301LMNGY
302LMNGY
303LMNGY
304LMNGY
305LMNGY
306LMNGY
307LMNGY
308LMNGY
309LMNGY
310LMNGY
311LMNGY
312LMNGY
313LMNGY
314LMNGY
315LMNGY
316LMNGY
317LLYGY
318LLYGY
319LLYGY
320LLYGY
321LLYGY
322LLYGY
323LLYGY
324LLYGY
325LLYGY
326LLYGY
327LLYGY
328LLYGY
329LLYGY
330LLYGY
331LLYGY
332LLYGY
333LLYGY
334LLYGY
335LLYGY
336LLYGY
337LLYGY
338LLYGY
339LLYGY
340LLYGY
341LLYGY
342LLYGY
343LLYGY
344LLYGY
345LLYGY
346LLYGY
347LLYGY
348LLYGY
349LLYGY
350LLYGY
351LLYGY
352LLYGY
353LLYGY
354LLYGY
355LLYGY
356LLYGY
357LLYGY
358LLYGY
359LLYGY
360LLYGY
361LLYGY
362LLYGY
363LLYGY
364LLYGY
365LLYGY
366LLYGY
367LLYGY
368LLYGY
369LLYGY
370LLYGY
371LLYGY
372LLYGY
373LLYGY
374LLYGY
375LLYGY
376LLYGY
377LLYGY
378LLYGY
379LLYGY
380LLYGY
381LLYEN
382LLYEN
383LLYEN
384LLYEN
385LLYEN
386LLYEN
387LLYEN
388LLYEN
389LLYEN
390LLYEN
391LLYEN
392LLYEN
393LLYEN
394LLYEN
395LLYEN
396LLYEN
397LLYEN
398LLYEN
399LLYEN
400LLYEN
401LLYEN
402LLYEN
403LLYEN
404LLYEN
405LLYEN
406LLYEN
407LLYEN
408LLYEN
409LLYEN
410LLYEN
411LLYEN
412LLYEN
413LLYEN
414LLYEN
415LLYEN
416LLYEN
417LLYEN
418LLYEN
419LLYEN
420LLYEN
421LLYEN
422LLYEN
423LLYEN
424LLYEN
425LLYEN
426LLYEN
427LLYEN
428LLYEN
429LLYEN
430LLYEN
431LLYEN
432LLYEN
433LLYEN
434LLYEN
435LLYEN
436LLYEN
437LLYEN
438LLYEN
439LLYEN
440LLYEN
441LLYEN
442LLYEN
443LLYEN
444LLYEN
445MLYEY
446MLYEY
447MLYEY
448MLYEY
449MLYEY
450MLYEY
451MLYEY
452MLYEY
453MLYEY
454MLYEY
455MLYEY
456MLYEY
457MLYEY
458MLYEY
459MLYEY
460MLYEY
461MLYEY
462MLYEY
463MLYEY
464MLYEY
465MLYEY
466MLYEY
467MLYEY
468MLYEY
469MLYEY
470MLYEY
471MLYEY
472MLYEY
473MLYEY
474MLYEY
475MLYEY
476MLYEY
477MLYEY
478MLYEY
479MLYEY
480MLYEY
481MLYEY
482MLYEY
483MLYEY
484MLYEY
485MLYEY
486MLYEY
487MLYEY
488MLYEY
489MLYEY
490MLYEY
491MLYEY
492MLYEY
493MLYEY
494MLYEY
495MLYEY
496MLYEY
497MLYEY
498MLYEY
499MLYEY
500MLYEY
501MLYEY
502MLYEY
503MLYEY
504MLYEY
505MLYEY
506MLYEY
507MLYEY
508MLYEY
509YMNGN
510YMNGN
511YMNGN
512YMNGN
513YMNGN
514YMNGN
515YMNGN
516YMNGN
517YMNGN
518YMNGN
519YMNGN
520YMNGN
521YMNGN
522YMNGN
523YMNGN
524YMNGN
525YMNGN
526YMNGN
527YMNGN
528YMNGN
529YMNGN
530YMNGN
531YMNGN
532YMNGN
533YMNGN
534YMNGN
535YMNGN
536YMNGN
537YMNGN
538YMNGN
539YMNGN
540YMNGN
541YMNGN
542YMNGN
543YMNGN
544YMNGN
545YMNGN
546YMNGN
547YMNGN
548YMNGN
549YMNGN
550YMNGN
551YMNGN
552YMNGN
553YMNGN
554YMNGN
555YMNGN
556YMNGN
557YMNGN
558YMNGN
559YMNGN
560YMNGN
561YMNGN
562YMNGN
563YMNGN
564YMNGN
565YMNGN
566YMNGN
567YMNGN
568YMNGN
569YMNGN
570YMNGN
571YMNGN
572YMNGN
573YMNGN
574YMNGN
575YMNGN
576YMNGN
577YMNGN
578YMNGN
579YMNGN
580YMNGN
581YMNGN
582YMNGN
583YMNGN
584YMNGN
585YMNGN
586YMNGN
587YMNGN
588YMNGN
589YMNGN
590YMNGN
591YMNGN
592YMNGN
593YMNGN
594YMNGN
595YMNGN
596YMNGN
597YMNGN
598YMNGN
599YMNGN
600YMNGN
601YMNGN
602YMNGN
603YMNGN
604YMNGN
605YMNGN
606YMNGN
607YMNGN
608YMNGN
609YMNGN
610YMNGN
611YMNGN
612YMNGN
613YMNGN
614YMNGN
615YMNGN
616YMNGN
617YMNGN
618YMNGN
619YMNGN
620YMNGN
621YMNGN
622YMNGN
623YMNGN
624YMNGN
625YMNGN
626YMNGN
627YMNGN
628YMNGN
629YMNGN
630YMNGN
631YMNGN
632YMNGN
633YMNGN
634YMNGN
635YMNGN
636YMNGN
637YLYGY
638YLYGY
639YLYGY
640YLYGY
641YLYGY
642YLYGY
643YLYGY
644YLYGY
645YLYGY
646YLYGY
647YLYGY
648YLYGY
649YLYGY
650YLYGY
651YLYGY
652YLYGY
653YLYGY
654YLYGY
655YLYGY
656YLYGY
657YLYGY
658YLYGY
659YLYGY
660YLYGY
661YLYGY
662YLYGY
663YLYGY
664YLYGY
665YLYGY
666YLYGY
667YLYGY
668YLYGY
669YLYGY
670YLYGY
671YLYGY
672YLYGY
673YLYGY
674YLYGY
675YLYGY
676YLYGY
677YLYGY
678YLYGY
679YLYGY
680YLYGY
681YLYGY
682YLYGY
683YLYGY
684YLYGY
685YLYGY
686YLYGY
687YLYGY
688YLYGY
689YLYGY
690YLYGY
691YLYGY
692YLYGY
693YLYGY
694YLYGY
695YLYGY
696YLYGY
697YLYGY
698YLYGY
699YLYGY
700YLYGY
701LMYGY
702LMYGY
703LMYGY
704LMYGY
705LMYGY
706LMYGY
707LMYGY
708LMYGY
709LMYGY
710LMYGY
711LMYGY
712LMYGY
713LMYGY
714LMYGY
715LMYGY
716LMYGY
717LMYGY
718LMYGY
719LMYGY
720LMYGY
721LMYGY
722LMYGY
723LMYGY
724LMYGY
725LMYGY
726LMYGY
727LMYGY
728LMYGY
729LMYGY
730LMYGY
731LMYGY
732LMYGY
733LMYGY
734LMYGY
735LMYGY
736LMYGY
737LMYGY
738LMYGY
739LMYGY
740LMYGY
741LMYGY
742LMYGY
743LMYGY
744LMYGY
745LMYGY
746LMYGY
747LMYGY
748LMYGY
749LMYGY
750LMYGY
751LMYGY
752LMYGY
753LMYGY
754LMYGY
755LMYGY
756LMYGY
757LMYGY
758LMYGY
759LMYGY
760LMYGY
761LMYGY
762LMYGY
763LMYGY
764LMYGY
765LMYGY
766LMYGY
767LMYGY
768LMYGY
769LMYGY
770LMYGY
771LMYGY
772LMYGY
773LMYGY
774LMYGY
775LMYGY
776LMYGY
777LMYGY
778LMYGY
779LMYGY
780LMYGY
781LMYGY
782LMYGY
783LMYGY
784LMYGY
785LMYGY
786LMYGY
787LMYGY
788LMYGY
789LMYGY
790LMYGY
791LMYGY
792LMYGY
793LMYGY
794LMYGY
795LMYGY
796LMYGY
797LMYGY
798LMYGY
799LMYGY
800LMYGY
801LMYGY
802LMYGY
803LMYGY
804LMYGY
805LMYGY
806LMYGY
807LMYGY
808LMYGY
809LMYGY
810LMYGY
811LMYGY
812LMYGY
813LMYGY
814LMYGY
815LMYGY
816LMYGY
817LMYGY
818LMYGY
819LMYGY
820LMYGY
821LMYGY
822LMYGY
823LMYGY
824LMYGY
825LMYGY
826LMYGY
827LMYGY
828LMYGY
829LMYGY
830LMYGY
831LMYGY
832LMYGY
833YMYEY
834YMYEY
835YMYEY
836YMYEY
837YMYEY
838YMYEY
839YMYEY
840YMYEY
841YMYEY
842YMYEY
843YMYEY
844YMYEY
845YMYEY
846YMYEY
847YMYEY
848YMYEY
849YMYEY
850YMYEY
851YMYEY
852YMYEY
853YMYEY
854YMYEY
855YMYEY
856YMYEY
857YMYEY
858YMYEY
859YMYEY
860YMYEY
861YMYEY
862YMYEY
863YMYEY
864YMYEY
865YMYEY
866YMYEY
867YMYEY
868YMYEY
869YMYEY
870YMYEY
871YMYEY
872YMYEY
873YMYEY
874YMYEY
875YMYEY
876YMYEY
877YMYEY
878YMYEY
879YMYEY
880YMYEY
881YMYEY
882YMYEY
883YMYEY
884YMYEY
885YMYEY
886YMYEY
887YMYEY
888YMYEY
889YMYEY
890YMYEY
891YMYEY
892YMYEY
893YMYEY
894YMYEY
895YMYEY
896YMYEY
897MMNEY
898MMNEY
899MMNEY
900MMNEY
901MMNEY
902MMNEY
903MMNEY
904MMNEY
905MMNEY
906MMNEY
907MMNEY
908MMNEY
909MMNEY
910MMNEY
911MMNEY
912MMNEY
913MMNEY
914MMNEY
915MMNEY
916MMNEY
917MMNEY
918MMNEY
919MMNEY
920MMNEY
921MMNEY
922MMNEY
923MMNEY
924MMNEY
925MMNEY
926MMNEY
927MMNEY
928MMNEY
929MHYGY
930MHYGY
931MHYGY
932MHYGY
933MHYGY
934MHYGY
935MHYGY
936MHYGY
937MHYGY
938MHYGY
939MHYGY
940MHYGY
941MHYGY
942MHYGY
943MHYGY
944MHYGY
945MHYGY
946MHYGY
947MHYGY
948MHYGY
949MHYGY
950MHYGY
951MHYGY
952MHYGY
953MHYGY
954MHYGY
955MHYGY
956MHYGY
957MHYGY
958MHYGY
959MHYGY
960MHYGY
961LMNEN
962LMNEN
963LMNEN
964LMNEN
965LMNEN
966LMNEN
967LMNEN
968LMNEN
969LMNEN
970LMNEN
971LMNEN
972LMNEN
973LMNEN
974LMNEN
975LMNEN
976LMNEN
977LMNEN
978LMNEN
979LMNEN
980LMNEN
981LMNEN
982LMNEN
983LMNEN
984LMNEN
985LMNEN
986LMNEN
987LMNEN
988LMNEN
989LMNEN
990LMNEN
991LMNEN
992LMNEN
993LMNEN
994LMNEN
995LMNEN
996LMNEN
997LMNEN
998LMNEN
999LMNEN
1000LMNEN
1001LMNEN
1002LMNEN
1003LMNEN
1004LMNEN
1005LMNEN
1006LMNEN
1007LMNEN
1008LMNEN
1009LMNEN
1010LMNEN
1011LMNEN
1012LMNEN
1013LMNEN
1014LMNEN
1015LMNEN
1016LMNEN
1017LMNEN
1018LMNEN
1019LMNEN
1020LMNEN
1021LMNEN
1022LMNEN
1023LMNEN
1024LMNEY
## 函數(shù) - C4.5分類決策樹算法webTJ.Datamining.setCTree(arrs,srrs); ##參數(shù)【arrs,srrs】【訓(xùn)練樣本和決策數(shù)組,學(xué)習(xí)樣本數(shù)組】

代碼樣例

var oTxt="Y,H,N,G,N|Y,H,N,G,N|Y,H,N,G,N|Y,H,N,G,N|Y,H,N,G,N|Y,H,N,G,N|Y,H,N,G,N|Y,H,N,G,N|Y,H,N,G,N|Y,H,N,G,N|Y,H,N,G,N|Y,H,N,G,N|Y,H,N,G,N|Y,H,N,G,N|Y,H,N,G,N|Y,H,N,G,N|Y,H,N,G,N|Y,H,N,G,N|Y,H,N,G,N|Y,H,N,G,N|Y,H,N,G,N|Y,H,N,G,N|Y,H,N,G,N|Y,H,N,G,N|Y,H,N,G,N|Y,H,N,G,N|Y,H,N,G,N|Y,H,N,G,N|Y,H,N,G,N|Y,H,N,G,N|Y,H,N,G,N|Y,H,N,G,N|Y,H,N,G,N|Y,H,N,G,N|Y,H,N,G,N|Y,H,N,G,N|Y,H,N,G,N|Y,H,N,G,N|Y,H,N,G,N|Y,H,N,G,N|Y,H,N,G,N|Y,H,N,G,N|Y,H,N,G,N|Y,H,N,G,N|Y,H,N,G,N|Y,H,N,G,N|Y,H,N,G,N|Y,H,N,G,N|Y,H,N,G,N|Y,H,N,G,N|Y,H,N,G,N|Y,H,N,G,N|Y,H,N,G,N|Y,H,N,G,N|Y,H,N,G,N|Y,H,N,G,N|Y,H,N,G,N|Y,H,N,G,N|Y,H,N,G,N|Y,H,N,G,N|Y,H,N,G,N|Y,H,N,G,N|Y,H,N,G,N|Y,H,N,G,N|Y,H,N,E,N|Y,H,N,E,N|Y,H,N,E,N|Y,H,N,E,N|Y,H,N,E,N|Y,H,N,E,N|Y,H,N,E,N|Y,H,N,E,N|Y,H,N,E,N|Y,H,N,E,N|Y,H,N,E,N|Y,H,N,E,N|Y,H,N,E,N|Y,H,N,E,N|Y,H,N,E,N|Y,H,N,E,N|Y,H,N,E,N|Y,H,N,E,N|Y,H,N,E,N|Y,H,N,E,N|Y,H,N,E,N|Y,H,N,E,N|Y,H,N,E,N|Y,H,N,E,N|Y,H,N,E,N|Y,H,N,E,N|Y,H,N,E,N|Y,H,N,E,N|Y,H,N,E,N|Y,H,N,E,N|Y,H,N,E,N|Y,H,N,E,N|Y,H,N,E,N|Y,H,N,E,N|Y,H,N,E,N|Y,H,N,E,N|Y,H,N,E,N|Y,H,N,E,N|Y,H,N,E,N|Y,H,N,E,N|Y,H,N,E,N|Y,H,N,E,N|Y,H,N,E,N|Y,H,N,E,N|Y,H,N,E,N|Y,H,N,E,N|Y,H,N,E,N|Y,H,N,E,N|Y,H,N,E,N|Y,H,N,E,N|Y,H,N,E,N|Y,H,N,E,N|Y,H,N,E,N|Y,H,N,E,N|Y,H,N,E,N|Y,H,N,E,N|Y,H,N,E,N|Y,H,N,E,N|Y,H,N,E,N|Y,H,N,E,N|Y,H,N,E,N|Y,H,N,E,N|Y,H,N,E,N|Y,H,N,E,N|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|M,H,N,G,Y|L,M,N,G,Y|L,M,N,G,Y|L,M,N,G,Y|L,M,N,G,Y|L,M,N,G,Y|L,M,N,G,Y|L,M,N,G,Y|L,M,N,G,Y|L,M,N,G,Y|L,M,N,G,Y|L,M,N,G,Y|L,M,N,G,Y|L,M,N,G,Y|L,M,N,G,Y|L,M,N,G,Y|L,M,N,G,Y|L,M,N,G,Y|L,M,N,G,Y|L,M,N,G,Y|L,M,N,G,Y|L,M,N,G,Y|L,M,N,G,Y|L,M,N,G,Y|L,M,N,G,Y|L,M,N,G,Y|L,M,N,G,Y|L,M,N,G,Y|L,M,N,G,Y|L,M,N,G,Y|L,M,N,G,Y|L,M,N,G,Y|L,M,N,G,Y|L,M,N,G,Y|L,M,N,G,Y|L,M,N,G,Y|L,M,N,G,Y|L,M,N,G,Y|L,M,N,G,Y|L,M,N,G,Y|L,M,N,G,Y|L,M,N,G,Y|L,M,N,G,Y|L,M,N,G,Y|L,M,N,G,Y|L,M,N,G,Y|L,M,N,G,Y|L,M,N,G,Y|L,M,N,G,Y|L,M,N,G,Y|L,M,N,G,Y|L,M,N,G,Y|L,M,N,G,Y|L,M,N,G,Y|L,M,N,G,Y|L,M,N,G,Y|L,M,N,G,Y|L,M,N,G,Y|L,M,N,G,Y|L,M,N,G,Y|L,M,N,G,Y|L,L,Y,G,Y|L,L,Y,G,Y|L,L,Y,G,Y|L,L,Y,G,Y|L,L,Y,G,Y|L,L,Y,G,Y|L,L,Y,G,Y|L,L,Y,G,Y|L,L,Y,G,Y|L,L,Y,G,Y|L,L,Y,G,Y|L,L,Y,G,Y|L,L,Y,G,Y|L,L,Y,G,Y|L,L,Y,G,Y|L,L,Y,G,Y|L,L,Y,G,Y|L,L,Y,G,Y|L,L,Y,G,Y|L,L,Y,G,Y|L,L,Y,G,Y|L,L,Y,G,Y|L,L,Y,G,Y|L,L,Y,G,Y|L,L,Y,G,Y|L,L,Y,G,Y|L,L,Y,G,Y|L,L,Y,G,Y|L,L,Y,G,Y|L,L,Y,G,Y|L,L,Y,G,Y|L,L,Y,G,Y|L,L,Y,G,Y|L,L,Y,G,Y|L,L,Y,G,Y|L,L,Y,G,Y|L,L,Y,G,Y|L,L,Y,G,Y|L,L,Y,G,Y|L,L,Y,G,Y|L,L,Y,G,Y|L,L,Y,G,Y|L,L,Y,G,Y|L,L,Y,G,Y|L,L,Y,G,Y|L,L,Y,G,Y|L,L,Y,G,Y|L,L,Y,G,Y|L,L,Y,G,Y|L,L,Y,G,Y|L,L,Y,G,Y|L,L,Y,G,Y|L,L,Y,G,Y|L,L,Y,G,Y|L,L,Y,G,Y|L,L,Y,G,Y|L,L,Y,G,Y|L,L,Y,G,Y|L,L,Y,G,Y|L,L,Y,G,Y|L,L,Y,G,Y|L,L,Y,G,Y|L,L,Y,G,Y|L,L,Y,G,Y|L,L,Y,E,N|L,L,Y,E,N|L,L,Y,E,N|L,L,Y,E,N|L,L,Y,E,N|L,L,Y,E,N|L,L,Y,E,N|L,L,Y,E,N|L,L,Y,E,N|L,L,Y,E,N|L,L,Y,E,N|L,L,Y,E,N|L,L,Y,E,N|L,L,Y,E,N|L,L,Y,E,N|L,L,Y,E,N|L,L,Y,E,N|L,L,Y,E,N|L,L,Y,E,N|L,L,Y,E,N|L,L,Y,E,N|L,L,Y,E,N|L,L,Y,E,N|L,L,Y,E,N|L,L,Y,E,N|L,L,Y,E,N|L,L,Y,E,N|L,L,Y,E,N|L,L,Y,E,N|L,L,Y,E,N|L,L,Y,E,N|L,L,Y,E,N|L,L,Y,E,N|L,L,Y,E,N|L,L,Y,E,N|L,L,Y,E,N|L,L,Y,E,N|L,L,Y,E,N|L,L,Y,E,N|L,L,Y,E,N|L,L,Y,E,N|L,L,Y,E,N|L,L,Y,E,N|L,L,Y,E,N|L,L,Y,E,N|L,L,Y,E,N|L,L,Y,E,N|L,L,Y,E,N|L,L,Y,E,N|L,L,Y,E,N|L,L,Y,E,N|L,L,Y,E,N|L,L,Y,E,N|L,L,Y,E,N|L,L,Y,E,N|L,L,Y,E,N|L,L,Y,E,N|L,L,Y,E,N|L,L,Y,E,N|L,L,Y,E,N|L,L,Y,E,N|L,L,Y,E,N|L,L,Y,E,N|L,L,Y,E,N|M,L,Y,E,Y|M,L,Y,E,Y|M,L,Y,E,Y|M,L,Y,E,Y|M,L,Y,E,Y|M,L,Y,E,Y|M,L,Y,E,Y|M,L,Y,E,Y|M,L,Y,E,Y|M,L,Y,E,Y|M,L,Y,E,Y|M,L,Y,E,Y|M,L,Y,E,Y|M,L,Y,E,Y|M,L,Y,E,Y|M,L,Y,E,Y|M,L,Y,E,Y|M,L,Y,E,Y|M,L,Y,E,Y|M,L,Y,E,Y|M,L,Y,E,Y|M,L,Y,E,Y|M,L,Y,E,Y|M,L,Y,E,Y|M,L,Y,E,Y|M,L,Y,E,Y|M,L,Y,E,Y|M,L,Y,E,Y|M,L,Y,E,Y|M,L,Y,E,Y|M,L,Y,E,Y|M,L,Y,E,Y|M,L,Y,E,Y|M,L,Y,E,Y|M,L,Y,E,Y|M,L,Y,E,Y|M,L,Y,E,Y|M,L,Y,E,Y|M,L,Y,E,Y|M,L,Y,E,Y|M,L,Y,E,Y|M,L,Y,E,Y|M,L,Y,E,Y|M,L,Y,E,Y|M,L,Y,E,Y|M,L,Y,E,Y|M,L,Y,E,Y|M,L,Y,E,Y|M,L,Y,E,Y|M,L,Y,E,Y|M,L,Y,E,Y|M,L,Y,E,Y|M,L,Y,E,Y|M,L,Y,E,Y|M,L,Y,E,Y|M,L,Y,E,Y|M,L,Y,E,Y|M,L,Y,E,Y|M,L,Y,E,Y|M,L,Y,E,Y|M,L,Y,E,Y|M,L,Y,E,Y|M,L,Y,E,Y|M,L,Y,E,Y|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,M,N,G,N|Y,L,Y,G,Y|Y,L,Y,G,Y|Y,L,Y,G,Y|Y,L,Y,G,Y|Y,L,Y,G,Y|Y,L,Y,G,Y|Y,L,Y,G,Y|Y,L,Y,G,Y|Y,L,Y,G,Y|Y,L,Y,G,Y|Y,L,Y,G,Y|Y,L,Y,G,Y|Y,L,Y,G,Y|Y,L,Y,G,Y|Y,L,Y,G,Y|Y,L,Y,G,Y|Y,L,Y,G,Y|Y,L,Y,G,Y|Y,L,Y,G,Y|Y,L,Y,G,Y|Y,L,Y,G,Y|Y,L,Y,G,Y|Y,L,Y,G,Y|Y,L,Y,G,Y|Y,L,Y,G,Y|Y,L,Y,G,Y|Y,L,Y,G,Y|Y,L,Y,G,Y|Y,L,Y,G,Y|Y,L,Y,G,Y|Y,L,Y,G,Y|Y,L,Y,G,Y|Y,L,Y,G,Y|Y,L,Y,G,Y|Y,L,Y,G,Y|Y,L,Y,G,Y|Y,L,Y,G,Y|Y,L,Y,G,Y|Y,L,Y,G,Y|Y,L,Y,G,Y|Y,L,Y,G,Y|Y,L,Y,G,Y|Y,L,Y,G,Y|Y,L,Y,G,Y|Y,L,Y,G,Y|Y,L,Y,G,Y|Y,L,Y,G,Y|Y,L,Y,G,Y|Y,L,Y,G,Y|Y,L,Y,G,Y|Y,L,Y,G,Y|Y,L,Y,G,Y|Y,L,Y,G,Y|Y,L,Y,G,Y|Y,L,Y,G,Y|Y,L,Y,G,Y|Y,L,Y,G,Y|Y,L,Y,G,Y|Y,L,Y,G,Y|Y,L,Y,G,Y|Y,L,Y,G,Y|Y,L,Y,G,Y|Y,L,Y,G,Y|Y,L,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|L,M,Y,G,Y|Y,M,Y,E,Y|Y,M,Y,E,Y|Y,M,Y,E,Y|Y,M,Y,E,Y|Y,M,Y,E,Y|Y,M,Y,E,Y|Y,M,Y,E,Y|Y,M,Y,E,Y|Y,M,Y,E,Y|Y,M,Y,E,Y|Y,M,Y,E,Y|Y,M,Y,E,Y|Y,M,Y,E,Y|Y,M,Y,E,Y|Y,M,Y,E,Y|Y,M,Y,E,Y|Y,M,Y,E,Y|Y,M,Y,E,Y|Y,M,Y,E,Y|Y,M,Y,E,Y|Y,M,Y,E,Y|Y,M,Y,E,Y|Y,M,Y,E,Y|Y,M,Y,E,Y|Y,M,Y,E,Y|Y,M,Y,E,Y|Y,M,Y,E,Y|Y,M,Y,E,Y|Y,M,Y,E,Y|Y,M,Y,E,Y|Y,M,Y,E,Y|Y,M,Y,E,Y|Y,M,Y,E,Y|Y,M,Y,E,Y|Y,M,Y,E,Y|Y,M,Y,E,Y|Y,M,Y,E,Y|Y,M,Y,E,Y|Y,M,Y,E,Y|Y,M,Y,E,Y|Y,M,Y,E,Y|Y,M,Y,E,Y|Y,M,Y,E,Y|Y,M,Y,E,Y|Y,M,Y,E,Y|Y,M,Y,E,Y|Y,M,Y,E,Y|Y,M,Y,E,Y|Y,M,Y,E,Y|Y,M,Y,E,Y|Y,M,Y,E,Y|Y,M,Y,E,Y|Y,M,Y,E,Y|Y,M,Y,E,Y|Y,M,Y,E,Y|Y,M,Y,E,Y|Y,M,Y,E,Y|Y,M,Y,E,Y|Y,M,Y,E,Y|Y,M,Y,E,Y|Y,M,Y,E,Y|Y,M,Y,E,Y|Y,M,Y,E,Y|Y,M,Y,E,Y|M,M,N,E,Y|M,M,N,E,Y|M,M,N,E,Y|M,M,N,E,Y|M,M,N,E,Y|M,M,N,E,Y|M,M,N,E,Y|M,M,N,E,Y|M,M,N,E,Y|M,M,N,E,Y|M,M,N,E,Y|M,M,N,E,Y|M,M,N,E,Y|M,M,N,E,Y|M,M,N,E,Y|M,M,N,E,Y|M,M,N,E,Y|M,M,N,E,Y|M,M,N,E,Y|M,M,N,E,Y|M,M,N,E,Y|M,M,N,E,Y|M,M,N,E,Y|M,M,N,E,Y|M,M,N,E,Y|M,M,N,E,Y|M,M,N,E,Y|M,M,N,E,Y|M,M,N,E,Y|M,M,N,E,Y|M,M,N,E,Y|M,M,N,E,Y|M,H,Y,G,Y|M,H,Y,G,Y|M,H,Y,G,Y|M,H,Y,G,Y|M,H,Y,G,Y|M,H,Y,G,Y|M,H,Y,G,Y|M,H,Y,G,Y|M,H,Y,G,Y|M,H,Y,G,Y|M,H,Y,G,Y|M,H,Y,G,Y|M,H,Y,G,Y|M,H,Y,G,Y|M,H,Y,G,Y|M,H,Y,G,Y|M,H,Y,G,Y|M,H,Y,G,Y|M,H,Y,G,Y|M,H,Y,G,Y|M,H,Y,G,Y|M,H,Y,G,Y|M,H,Y,G,Y|M,H,Y,G,Y|M,H,Y,G,Y|M,H,Y,G,Y|M,H,Y,G,Y|M,H,Y,G,Y|M,H,Y,G,Y|M,H,Y,G,Y|M,H,Y,G,Y|M,H,Y,G,Y|L,M,N,E,N|L,M,N,E,N|L,M,N,E,N|L,M,N,E,N|L,M,N,E,N|L,M,N,E,N|L,M,N,E,N|L,M,N,E,N|L,M,N,E,N|L,M,N,E,N|L,M,N,E,N|L,M,N,E,N|L,M,N,E,N|L,M,N,E,N|L,M,N,E,N|L,M,N,E,N|L,M,N,E,N|L,M,N,E,N|L,M,N,E,N|L,M,N,E,N|L,M,N,E,N|L,M,N,E,N|L,M,N,E,N|L,M,N,E,N|L,M,N,E,N|L,M,N,E,N|L,M,N,E,N|L,M,N,E,N|L,M,N,E,N|L,M,N,E,N|L,M,N,E,N|L,M,N,E,N|L,M,N,E,N|L,M,N,E,N|L,M,N,E,N|L,M,N,E,N|L,M,N,E,N|L,M,N,E,N|L,M,N,E,N|L,M,N,E,N|L,M,N,E,N|L,M,N,E,N|L,M,N,E,N|L,M,N,E,N|L,M,N,E,N|L,M,N,E,N|L,M,N,E,N|L,M,N,E,N|L,M,N,E,N|L,M,N,E,N|L,M,N,E,N|L,M,N,E,N|L,M,N,E,N|L,M,N,E,N|L,M,N,E,N|L,M,N,E,N|L,M,N,E,N|L,M,N,E,N|L,M,N,E,N|L,M,N,E,N|L,M,N,E,N|L,M,N,E,N|L,M,N,E,N|L,M,N,E,Y"; var oArrs=webTJ.getArrs(oTxt,"|",","); var oSrrs=[['M','H','Y','G','Y'],['L','M','N','E','N'],['M','H','N','G','Y']]; webTJ.Datamining.setCTree(oArrs,oSrrs);

在函數(shù)webTJ.Datamining.setC45中,訓(xùn)練樣本、決策特征變量樣本和學(xué)習(xí)樣本都以數(shù)組形式表達(dá),決策特征變量樣本為最后一列。如果學(xué)習(xí)樣本只有一組,應(yīng)按一維數(shù)組形式輸入,如['M','H','N','G','Y']。

五、案例分析

轉(zhuǎn)載于:https://www.cnblogs.com/cloudtj/p/6874384.html

總結(jié)

以上是生活随笔為你收集整理的ID3和C4.5分类决策树算法 - 数据挖掘算法(7)的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網(wǎng)站內(nèi)容還不錯(cuò),歡迎將生活随笔推薦給好友。