日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 >

【渝粤题库】陕西师范大学200271 微分几何 作业(专升本)

發布時間:2023/12/2 36 豆豆
生活随笔 收集整理的這篇文章主要介紹了 【渝粤题库】陕西师范大学200271 微分几何 作业(专升本) 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

《微分幾何》作業
一. 填空題

  • 曲面的第一基本形式為( )。
  • 空間曲線的基本公式是( )。
  • 曲面在任一點(u,v)的單位法向量公式為( )
  • 空間曲線的切向量為( )。
  • 曲線的主法向量總是指向曲線( )。
  • 曲面上正常點滿足的條件為( )
  • 曲線的撓率表達式為( )。
  • 曲面上曲率線滿足的微分方程為( )。
  • 在曲面S: 上,線的微分方程是( )。
    10.設, 若∥ 則 ( )。
    11.可展曲面上每一點都是 ( )點。
    12.曲線在點的切線方程為( )。
    13. 設曲線C: =(s), 則C在s處的主法線方程是 .
    14. 設,,是曲線C:=(s)的三個基本單位向量, 則= .
    15. 設={1,0, 0}, ={0,2,0}, ={0,0,6},則(,,2)= .
    16 若向量函數=(t)的終點始終在中心為坐標原點, 半徑為2的球面上, 則 = .
    17. 若曲線在一點的撓率τ>0, 則曲線在該點是 旋的.
    18. 在曲面上一點,如果對于任意方向,法曲率都是零,則該點是曲面上的 點.
    19. 已知向量, .若,則 .
    20. 設是非零向量,且, 則= .
    21. 曲線在處的密切平面方程是 .
    22. 設曲線的曲率是,則= .
    23. 空間曲線論基本公式是 .
    24.根據曲線論的基本定理,在可以相差一個空間位置的情況下,唯一決定一條空
    間曲線的兩個不變量是曲線的 和 .
  • 二. 判斷題

  • 空間內兩自由向量一定共面。
  • 可展曲面上沒有雙曲點。
  • 曲面上曲線在一點的測地曲率是該曲線在這一點切平面上正投影線在這一點的曲率。
  • 若,則是平面曲線。
  • 空間曲線的形狀(不考慮位置差別)完全由它的曲率和撓率唯一確定。
  • 曲面上任一點的單位法向量為。
  • 曲面在正常點處一定有切平面和法線。
  • 曲線 C: =與曲線:=在處有相同的曲率。
  • 表示線的切方向。
    10.向量函數滿足 則必有一常向量,滿足⊥.
    11.曲面上點都是橢圓點,則高斯曲率恒大于零.
    12.高斯曲率K≡0的曲面一定是某一條曲線的切線曲面.
  • 三. 選擇題

  • 平行于固定平面與()=0的關系是:
    A:充分條件; B:充要條件; C:必要條件。
  • 在曲線=上一點的切線和其鄰近一點決定一平面,
    當 時的極限平面存在,是:
    A:從切平面; B:法平面; C:密切平面。
  • 曲線的曲率和撓率與參數的選擇關系是( ).
    A:有關系    B: 無關     C: 無法判定。
  • 下列等式成立的是( ):
    A:;  B.; C.。
  • 撓率曲率的曲線是( )
    A.半徑為4的圓;   B.半徑為的圓;  C.半徑為2的圓 ; D.半徑為的圓。
  • 可展曲面與( )等距等價:
    A.球面;     B.平面;     C.正螺面。
  • 具有固定方向與=0的關系是( ):
    A.必要條件;    B.充分條件; C.充要條件。
  • 如果所有密切平面垂直于某個固定直線,那么曲線是( ):
    A.一般空間曲線; B.平面曲線; C.不確定。
  • 球面上的法截線是( ):
    A.大圓;     B.一般圓; C.一般曲線。
  • 高斯曲率表達式錯誤的為:( )
    A. ; B.; C.。
  • 若向量函數的終點在通過原點的一條直線上,則( )
    A.;    B. 是定向的;   C.。
  • 在曲線=上一點及其鄰近一點決定一直線,
    當 時的極限直線存在,是:
    A.切線;      B.主法線; C.副法線。
  • 曲率線滿足的條件是( )。
    A. ;   B.;    C. ∥。
  • 在線為測地線的半測地坐標網時,曲面的第一基本形式為:
    A.;        B. ;
    C.。
  • 若曲面S在每一點的高斯曲率為,則它可以與半徑為(   )的球面貼合
    A. ;      B. 2 ;    C.  。   
    16.如果是曲面上的測地三角形,則公式為:
    A.;      B.;
    C.;    . D.以上三種都對。
    17.設均為非零向量,且,則( )
    A.線性相關;         B.線性無關; 
    C.可以由線性表示;      D.可以由線性表示
    18.空間曲線的形狀( )決定
    A.由曲率和撓率 B. 僅由曲率    .C.僅由撓率   D. 由參數的選取
    19.設S 是球面, 則( )
    A.S上每一點是雙曲點;    B. S上每一點是拋物點;
    C.S上的圓的指向球心;    D. S上的測地線的指向球心.
    20.第二類克氏符號只與( )有關:
     A.E,F,G; B.L,M,N; C.E,F,G,L,M,N; D.都無關。
    四. 證明題
  • 證明:曲線是平面曲線。
  • 證明是可展曲面。
  • 如果曲線的所有切線都經過一個定點,則此曲線是直線。
  • 如果曲面上曲線既是測地線又是曲率線,則它是平面線。
  • 設C是半徑為的球面上半徑為的圓, 是曲線C上各點的測地曲率.
    證明: .
  • 證明不是可展曲面。
  • 證明:如果曲線的所有主法線都經過一個固定點,則曲線是以固定點為圓心的圓.
  • 可展曲面上的直母線是曲率線.
    9. 試證:如果曲線的所有密切面都經過一個固定點,則曲線是平面曲線.
  • 證明:曲面: 在每一點的切平面都通過坐標原點
    五. 計算題
  • 求曲線 的曲率和撓率。
  • 求曲線在點的法平面方程。
  • 求曲線在處的副法線和從切平面方程。
  • 求正螺面的第一、第二基本形式,并計算曲線和方向的交角。
  • 求曲線 的曲率和撓率。
  • 求曲線在點的密切平面方程。
  • 求曲線C:={ , }的曲率和撓率.
  • 求曲面S:=的高斯曲率
    9. 求曲線C:=上從到這一段弧的長度.
    10. 求曲線C:=在處的和.
    11. 求曲線的曲率和撓率.
    12. 求曲線C:在處的切線方程.
    13. 求曲線C:=上在處的密切面方程.
    14. 求拋物線的曲率.
  • 總結

    以上是生活随笔為你收集整理的【渝粤题库】陕西师范大学200271 微分几何 作业(专升本)的全部內容,希望文章能夠幫你解決所遇到的問題。

    如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。