日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

为什么梯度反方向是函数下降最快的方向

發布時間:2023/12/3 编程问答 29 豆豆
生活随笔 收集整理的這篇文章主要介紹了 为什么梯度反方向是函数下降最快的方向 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

轉載自??為什么梯度反方向是函數下降最快的方向

為什么梯度反方向是函數下降最快的方向?

剛接觸梯度下降這個概念的時候,是在學習機器學習算法的時候,很多訓練算法用的就是梯度下降,然后資料和老師們也說朝著梯度的反方向變動,函數值下降最快,但是究其原因的時候,很多人都表達不清楚。所以我整理出自己的理解,從方向導數這個角度把這個結論證明出來,讓我們知其然也知其所以然~

下面我一開始不提梯度的概念,完全根據自己的理解進行下文的梳理,一步一步推出梯度的來歷:

  • 導數

導數的幾何意義可能很多人都比較熟悉: 當函數定義域和取值都在實數域中的時候,導數可以表示函數曲線上的切線斜率。 除了切線的斜率,導數還表示函數在該點的變化率。

將上面的公式轉化為下面圖像為:

(來自維基百科)

直白的來說,導數代表了在自變量變化趨于無窮小的時候,函數值的變化與自變量變化的比值代表了導數,幾何意義有該點的切線。物理意義有該時刻的(瞬時)變化率...

注意在一元函數中,只有一個自變量變動,也就是說只存在一個方向的變化率,這也就是為什么一元函數沒有偏導數的原因。

?

  • 偏導數

既然談到偏導數,那就至少涉及到兩個自變量,以兩個自變量為例,z=f(x,y) . 從導數到偏導數,也就是從曲線來到了曲面. 曲線上的一點,其切線只有一條。但是曲面的一點,切線有無數條。

而我們所說的偏導數就是指的是多元函數沿坐標軸的變化率.

指的是函數在y方向不變,函數值沿著x軸方向的變化率

指的是函數在x方向不變,函數值沿著y軸方向的變化率

對應的圖像形象表達如下:

那么偏導數對應的幾何意義是是什么呢?

  • 偏導數就是曲面被平面所截得的曲面在點處的切線對x軸的斜率

  • 偏導數就是曲面被平面所截得的曲面在點處的切線對y軸的斜率

可能到這里,讀者就已經發現偏導數的局限性了,原來我們學到的偏導數指的是多元函數沿坐標軸的變化率,但是我們往往很多時候要考慮多元函數沿任意方向的變化率,那么就引出了方向導數.

?

  • 方向導數

終于引出我們的重頭戲了,方向導數,下面我們慢慢來走進它

假設你站在山坡上,相知道山坡的坡度(傾斜度)

山坡圖如下:

假設山坡表示為,你應該已經會做主要倆個方向的斜率.

y方向的斜率可以對y偏微分得到.

同樣的,x方向的斜率也可以對x偏微分得到

那么我們可以使用這倆個偏微分來求出任何方向的斜率(類似于一個平面的所有向量可以用倆個基向量來表示一樣)

現在我們有這個需求,想求出u方向的斜率怎么辦.假設為一個曲面,為定義域中一個點,單位向量的斜率,其中是此向量與x軸正向夾角.單位向量u可以表示對任何方向導數的方向.如下圖:

那么我們來考慮如何求出u方向的斜率,可以類比于前面導數定義,得出如下:

?

設為一個二元函數,為一個單位向量,如果下列的極限值存在

此方向導數記為

則稱這個極限值是沿著u方向的方向導數,那么隨著的不同,我們可以求出任意方向的方向導數.這也表明了方向導數的用處,是為了給我們考慮函數對任意方向的變化率.

在求方向導數的時候,除了用上面的定義法求之外,我們還可以用偏微分來簡化我們的計算.

表達式是:(至于為什么成立,很多資料有,不是這里討論的重點)

那么一個平面上無數個方向,函數沿哪個方向變化率最大呢?

目前我不管梯度的事,我先把表達式寫出來:

設,

那么我們可以得到:

(α為向量與向量之間的夾角)

那么此時如果要取得最大值,也就是當為0度的時候,也就是向量I(這個方向是一直在變,在尋找一個函數變化最快的方向)與向量A(這個方向當點固定下來的時候,它就是固定的)平行的時候,方向導數最大.方向導數最大,也就是單位步伐,函數值朝這個反向變化最快.

好了,現在我們已經找到函數值下降最快的方向了,這個方向就是和向量相同的方向.那么此時我把A向量命名為梯度(當一個點確定后,梯度方向是確定的),也就是說明了為什么梯度方向是函數變化率最大的方向了!!!(因為本來就是把這個函數變化最大的方向命名為梯度)

總結

以上是生活随笔為你收集整理的为什么梯度反方向是函数下降最快的方向的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。

主站蜘蛛池模板: 亚洲国产精品成人综合色在线婷婷 | 丰满岳跪趴高撅肥臀尤物在线观看 | 庆余年三| 欧美激情伊人 | 国产精品系列在线观看 | 91精品久久久久久 | 欧美日韩一级黄色片 | 国产一区二区在 | 中文字幕在线观看视频网站 | 浪漫樱花在线观看高清动漫 | 岛国av免费在线 | 国产suv精品一区二区69 | 日批视频免费播放 | 3d欧美精品动漫xxxx无尽 | 一本色道久久综合亚洲二区三区 | 免费网站在线观看人数在哪动漫 | 老子午夜影院 | 爱豆国产剧免费观看大全剧集 | 精品国产一区二 | 国产91精品一区二区绿帽 | 亚洲精品视频中文字幕 | 亚洲天天做 | 农村妇女愉情三级 | 91一区在线| 激情五月激情 | 男人日女人的网站 | 国产精品美女 | 中文字幕乱码亚洲无线三区 | 精品国产成人亚洲午夜福利 | 日本人妻丰满熟妇久久久久久 | 精品无码国产av一区二区三区 | 亚洲人体一区 | 久久久久九九九 | 激情四射av | 免费观看黄色的网站 | 欧洲一区二区三区在线 | 大学生一级一片全黄 | 久久精品国产亚洲av麻豆色欲 | 国产黄a三级三级三级看三级男男 | 亚色影库 | 久久青青视频 | 性感少妇av | 在线观看一区二区视频 | 四虎影视成人永久免费观看亚洲欧美 | 57pao国产精品一区 | 亚洲精品综合在线 | 日韩久久精品一区二区 | 精品视频导航 | 日韩丰满少妇无码内射 | 国模少妇一区二区三区 | 99re热视频| 欧美一级片免费 | 日本www| 激情av在线播放 | 91成人短视频| 欧美在线一区二区 | 日本黄xxxxxxxxx100 | 亚洲一级片av | 永久久久久久 | 在线观看成人 | 少妇一区二区视频 | 久久精品在这里 | 丝袜制服影音先锋 | 精品一区二区亚洲 | 99久久99久久精品国产片果冰 | 色呦呦日韩精品 | 免费裸体美女网站 | 日本高清视频免费观看 | 国产一区二区三区视频免费在线观看 | 暖暖av在线| 欧美国产日韩在线 | 无码人妻精品一区二区蜜桃视频 | 神马午夜麻豆 | 欧美视频免费在线观看 | 国产成人无码精品久久久久 | 一道本av | 在线欧美视频 | 高清免费av | v99av| 在线中文字幕第一页 | 男人的天堂狠狠干 | japanese24hdxxxx中文字幕 | 国产91丝袜 | 懂色av蜜臀av粉嫩av分享吧 | 轮乱| 国产特级淫片免费看 | 无遮挡裸光屁屁打屁股男男 | 午夜亚洲aⅴ无码高潮片苍井空 | 日韩久久久精品 | 高级毛片 | 少妇大叫太粗太大爽一区二区 | 狠狠操在线播放 | 在线看黄的网站 | 成人小说亚洲一区二区三区 | 国产又色又爽又黄 | 毛茸茸毛片 | 中文字幕一区二区在线观看 | 欧美不卡网 | 亚洲男女视频在线观看 |