日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

P1447 [NOI2010]能量采集(mobius反演)

發布時間:2023/12/4 编程问答 23 豆豆
生活随笔 收集整理的這篇文章主要介紹了 P1447 [NOI2010]能量采集(mobius反演) 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

P1447 [NOI2010]能量采集

式子化簡

顯然題目就是要我們求∑i=1n∑j=1m2gcd(i,j)?1\sum_{i = 1} ^{n} \sum_{j = 1} ^{m} 2gcd(i, j) - 1i=1n?j=1m?2gcd(i,j)?1

=2∑i=1n∑j=1mgcd(i,j)?nm= 2\sum_{i = 1} ^{n} \sum_{j = 1} ^{m} gcd(i, j) - nm=2i=1n?j=1m?gcd(i,j)?nm

轉化為我們要求∑i=1n∑j=1mgcd(i,j)\sum_{i = 1} ^{n} \sum_{j = 1} ^{m} gcd(i, j)i=1n?j=1m?gcd(i,j)

=∑d=1nd∑i=1nd∑j=1mdgcd(i,j)==1= \sum_{d = 1} ^{n}d\sum_{i = 1} ^{\frac{n}ozvdkddzhkzd} \sum_{j = 1} ^{\frac{m}ozvdkddzhkzd} gcd(i, j) == 1=d=1n?di=1dn??j=1dm??gcd(i,j)==1

套上mobiusmobiusmobius

=∑d=1nd∑i=1nd∑j=1md∑k∣gcd(i,j)μ(k)= \sum_{d = 1} ^{n}d\sum_{i = 1} ^{\frac{n}ozvdkddzhkzd} \sum_{j = 1} ^{\frac{m}ozvdkddzhkzd} \sum_{k \mid gcd(i, j)} \mu(k)=d=1n?di=1dn??j=1dm??kgcd(i,j)?μ(k)

=∑d=1nd∑i=1nd∑j=1md∑k∣gcd(i,j)μ(k)= \sum_{d = 1} ^{n}d\sum_{i = 1} ^{\frac{n}ozvdkddzhkzd} \sum_{j = 1} ^{\frac{m}ozvdkddzhkzd} \sum_{k \mid gcd(i, j)} \mu(k)=d=1n?di=1dn??j=1dm??kgcd(i,j)?μ(k)

=∑d=1nd∑k=1ndμ(k)?ndk??mdk?= \sum_{d = 1} ^{n} d\sum_{k = 1} ^{\frac{n}ozvdkddzhkzd}\mu(k) \lfloor\frac{n}{dk}\rfloor \lfloor\frac{m}{dk}\rfloor=d=1n?dk=1dn??μ(k)?dkn???dkm??

t=dkt = dkt=dk

=∑t=1n?nt??mt?∑d∣tdμ(td)= \sum_{t = 1} ^{n} \lfloor\frac{n}{t}\rfloor \lfloor\frac{m}{t}\rfloor \sum_{d \mid t}d\mu(\frac{t}ozvdkddzhkzd)=t=1n??tn???tm??dt?dμ(dt?)

mobiusmobiusmobius反演有∑d∣nμ(d)d=?(n)n\sum_{d\mid n}\frac{\mu(d)}ozvdkddzhkzd = \frac{\phi(n)}{n}dn?dμ(d)?=n?(n)?

=∑t=1n?nt??mt??(t)= \sum_{t = 1} ^{n} \lfloor\frac{n}{t}\rfloor \lfloor\frac{m}{t}\rfloor \phi(t)=t=1n??tn???tm???(t)

代碼

/*Author : lifehappy */ #pragma GCC optimize(2) #pragma GCC optimize(3) #include <bits/stdc++.h>#define mp make_pair #define pb push_back #define endl '\n' #define mid (l + r >> 1) #define lson rt << 1, l, mid #define rson rt << 1 | 1, mid + 1, r #define ls rt << 1 #define rs rt << 1 | 1using namespace std;typedef long long ll; typedef unsigned long long ull; typedef pair<int, int> pii;const double pi = acos(-1.0); const double eps = 1e-7; const int inf = 0x3f3f3f3f;inline ll read() {ll f = 1, x = 0;char c = getchar();while(c < '0' || c > '9') {if(c == '-') f = -1;c = getchar();}while(c >= '0' && c <= '9') {x = (x << 1) + (x << 3) + (c ^ 48);c = getchar();}return f * x; }const int N = 1e7 + 10;bool st[N];vector<int> prime;int n, m;ll phi[N];void mobius() {st[0] = st[1] = phi[1] = 1;for(int i = 2; i < N; i++) {if(!st[i]) {prime.pb(i);phi[i] = i - 1;}for(int j = 0; j < prime.size() && i * prime[j] < N; j++) {st[i * prime[j]] = 1;if(i % prime[j] == 0) {phi[i * prime[j]] = phi[i] * prime[j];break;}phi[i * prime[j]] = phi[i] * (prime[j] - 1);}}for(int i = 1; i < N; i++) phi[i] += phi[i - 1]; }int main() {// freopen("in.txt", "r", stdin);// freopen("out.txt", "w", stdout);// ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);mobius();ll n = read(), m = read();if(n > m) swap(n, m);ll ans = 0;for(ll l = 1, r; l <= n; l = r + 1) {r = min(n / (n / l), m / (m / l));ans += (n / l) * (m / l) * (phi[r] - phi[l - 1]);}printf("%lld\n", 2 * ans - n * m);return 0; }

總結

以上是生活随笔為你收集整理的P1447 [NOI2010]能量采集(mobius反演)的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。