日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

P5221 Product(反演)

發布時間:2023/12/4 编程问答 27 豆豆
生活随笔 收集整理的這篇文章主要介紹了 P5221 Product(反演) 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

P5221 Product

推式子

∏i=1n∏j=1nlcm(i,j)gcd(i,j)∏i=1n∏j=1nijgcd(i,j)2我們考慮上面∏i=1n∏j=1nij∏i=1nin∏j=1nj∏i=1ninn!n!n∏i=1nin最后得到n!2n再考慮下面化簡∏i=1n∏j=1ngcd(i,j)2∏d=1nd2∑i=1nd∑j=1nd[gcd(i,j)=1]對∑i=1nd∑j=1nd[gcd(i,j)==1]化簡∑k=1ndμ(k)(nkd)2整體化簡后n!2n∏d=1nd2∑k=1ndμ(k)(nkd)2\prod_{i = 1} ^{n} \prod_{j= 1} ^{n}\frac{lcm(i, j)}{gcd(i, j)}\\ \prod_{i = 1} ^{n} \prod_{j = 1} ^{n} \frac{ij}{gcd(i, j) ^ 2}\\ 我們考慮上面\\ \prod_{i = 1} ^{n} \prod_{j = 1} ^{n} ij\\ \prod_{i = 1} ^{n} i ^ n \prod_{j = 1} ^{n}j\\ \prod_{i = 1} ^{n} i ^ n n!\\ n! ^n \prod_{i = 1} ^{n} i ^ n\\ 最后得到n! ^{2n}\\ 再考慮下面化簡\\ \prod_{i = 1} ^{n} \prod_{j = 1} ^{n}gcd(i, j) ^2\\ \prod_{d = 1} ^{n} d ^ {2\sum\limits_{i = 1} ^{\frac{n}ozvdkddzhkzd}\sum\limits_{j = 1} ^{\frac{n}ozvdkddzhkzd}[gcd(i, j) = 1]}\\ 對\sum_{i = 1} ^{\frac{n}ozvdkddzhkzd} \sum_{j = 1} ^{\frac{n}ozvdkddzhkzd} [gcd(i, j) == 1]化簡\\ \sum_{k = 1} ^{\frac{n}ozvdkddzhkzd} \mu(k) \left(\frac{n}{kd}\right) ^ 2\\ 整體化簡后\frac{n!^{2n}}{\prod_{d = 1} ^{n} d ^{2\sum\limits_{k = 1} ^{\frac{n}ozvdkddzhkzd} \mu(k) \left(\frac{n}{kd}\right) ^ 2}} i=1n?j=1n?gcd(i,j)lcm(i,j)?i=1n?j=1n?gcd(i,j)2ij?i=1n?j=1n?iji=1n?inj=1n?ji=1n?inn!n!ni=1n?inn!2ni=1n?j=1n?gcd(i,j)2d=1n?d2i=1dn??j=1dn??[gcd(i,j)=1]i=1dn??j=1dn??[gcd(i,j)==1]k=1dn??μ(k)(kdn?)2d=1n?d2k=1dn??μ(k)(kdn?)2n!2n?

代碼

開c++17,不加O2O_2O2?能過,卡內存,,,

#include <bits/stdc++.h>using namespace std;typedef long long ll;const int mod = 104857601, Mod = mod - 1, N = 1e6 + 10;int mu[N], prime[N], cnt, n;bool st[N];ll quick_pow(ll a, int n) {ll ans = 1;while(n) {if(n & 1) ans = ans * a % mod;a = a * a % mod;n >>= 1;}return ans; }ll inv(ll x) {return quick_pow(x, mod - 2); }void init() {mu[1] = 1;for(int i = 2; i < N; i++) {if(!st[i]) {prime[cnt++] = i;mu[i] = -1;}for(int j = 0; j < cnt && 1ll * i * prime[j] < N; j++) {st[i * prime[j]] = 1;if(i % prime[j] == 0) break;mu[i * prime[j]] = -mu[i];}}for(int i = 1; i < N; i++) {mu[i] += mu[i - 1];} }ll calc1(ll l, ll r) {ll ans = 1;for(int i = l; i <= r; i++) {ans = ans * i % mod;}return ans; }ll calc2(ll n) {ll ans = 0;for(ll l = 1, r; l <= n; l = r + 1) {r = n / (n / l);ans = (ans + 1ll *(mu[r] - mu[l - 1]) * (n / l) % Mod * (n / l) % Mod) % Mod;}return (ans % Mod + Mod) % Mod; }int main() {init();scanf("%d", &n);ll a = 1, b = 1;for(int i = 1; i <= n; i++) a = a * i % mod;a = quick_pow(a, (2 * n) % Mod);for(int l = 1, r; l <= n; l = r + 1) {r = n / (n / l);b = b * quick_pow(calc1(l, r), 2ll * calc2(n / l) % Mod) % mod;}printf("%lld\n", 1ll * a * inv(b) % mod);return 0; }

總結

以上是生活随笔為你收集整理的P5221 Product(反演)的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。