sklearn集成学习概述
生活随笔
收集整理的這篇文章主要介紹了
sklearn集成学习概述
小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
常見的集成學習有Voting、Bagging、Boost和Stacking。
Voting代碼
from sklearn.model_selection import train_test_split from sklearn.datasets import make_moons from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import VotingClassifier from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC# compose moon data X, y = make_moons(n_samples=500, noise=0.30, random_state=42) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)log_clf = LogisticRegression() rnd_clf = RandomForestClassifier() svm_clf = SVC()voting_clf = VotingClassifier(estimators=[('lr', log_clf), ('rf', rnd_clf), ('svc', svm_clf)],voting='hard' )voting_clf.fit(X_train, y_train)from sklearn.metrics import accuracy_scorefor clf in (log_clf, rnd_clf, svm_clf, voting_clf):clf.fit(X_train, y_train)y_pred = clf.predict(X_test) print(clf.__class__.__name__, accuracy_score(y_test, y_pred))總結
以上是生活随笔為你收集整理的sklearn集成学习概述的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 教你如何扎头发 怎样简单扎扎头发
- 下一篇: Leetcode贪心 种花问题