直方图python高度_python – 子图中直方图的动画
normed =直方圖的True參數使直方圖繪制分布的密度.從the documentation開始:
normed : boolean, optional
If True, the first element of the return tuple will be the counts normalized to form a probability density, i.e., n/(len(x)`dbin), i.e., the integral of the histogram will sum to 1. If stacked is also True, the sum of the histograms is normalized to 1.
Default is False
這意味著直方圖條的高度取決于箱寬度.如果僅繪制一個數據點,則動畫開始時的情況下,條形高度將為1./binwidth.如果箱寬度小于零,則桿高度可能變得非常大.
因此,在整個動畫過程中修復分檔并使用它們是個好主意.
清除軸也是合理的,這樣就不會繪制100個不同的直方圖.
import numpy as np
from matplotlib.pylab import *
import matplotlib.animation as animation
# generate 4 random variables from the random, gamma, exponential, and uniform distribution
x1 = np.random.normal(-2.5, 1, 10000)
x2 = np.random.gamma(2, 1.5, 10000)
x3 = np.random.exponential(2, 10000)+7
x4 = np.random.uniform(14,20, 10000)
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2)
def updateData(curr):
if curr <=2: return
for ax in (ax1, ax2, ax3, ax4):
ax.clear()
ax1.hist(x1[:curr], normed=True, bins=np.linspace(-6,1, num=21), alpha=0.5)
ax2.hist(x2[:curr], normed=True, bins=np.linspace(0,15,num=21), alpha=0.5)
ax3.hist(x3[:curr], normed=True, bins=np.linspace(7,20,num=21), alpha=0.5)
ax4.hist(x4[:curr], normed=True, bins=np.linspace(14,20,num=21), alpha=0.5)
simulation = animation.FuncAnimation(fig, updateData, interval=50, repeat=False)
plt.show()
總結
以上是生活随笔為你收集整理的直方图python高度_python – 子图中直方图的动画的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: python画相关性可视化图_Pytho
- 下一篇: python实例化是什么意思_Pytho