日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

第二章:第二三节数据重构

發布時間:2023/12/8 编程问答 28 豆豆
生活随笔 收集整理的這篇文章主要介紹了 第二章:第二三节数据重构 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

復習:在前面我們已經學習了Pandas基礎,第二章我們開始進入數據分析的業務部分,在第二章第一節的內容中,我們學習了數據的清洗,這一部分十分重要,只有數據變得相對干凈,我們之后對數據的分析才可以更有力。而這一節,我們要做的是數據重構,數據重構依舊屬于數據理解(準備)的范圍。

開始之前,導入numpy、pandas包和數據

# 導入基本庫 import numpy as np import pandas as pd # 載入data文件中的:train-left-up.csv train_left_up = pd.read_csv('./data/train-left-up.csv')

2 第二章:數據重構

2.4 數據的合并

2.4.1 任務一:將data文件夾里面的所有數據都載入,觀察數據的之間的關系

train_left_down = pd.read_csv('./data/train-left-down.csv') train_right_up = pd.read_csv('./data/train-right-up.csv') train_right_down = pd.read_csv('./data/train-right-down.csv') train_left_down.head() PassengerIdSurvivedPclassName01234
44002Kvillner, Mr. Johan Henrik Johannesson
44112Hart, Mrs. Benjamin (Esther Ada Bloomfield)
44203Hampe, Mr. Leon
44303Petterson, Mr. Johan Emil
44412Reynaldo, Ms. Encarnacion
train_right_up.head() SexAgeSibSpParchTicketFareCabinEmbarked01234
male22.010A/5 211717.2500NaNS
female38.010PC 1759971.2833C85C
female26.000STON/O2. 31012827.9250NaNS
female35.01011380353.1000C123S
male35.0003734508.0500NaNS
train_right_down.head() SexAgeSibSpParchTicketFareCabinEmbarked01234
male31.000C.A. 1872310.500NaNS
female45.011F.C.C. 1352926.250NaNS
male20.0003457699.500NaNS
male25.0103470767.775NaNS
female28.00023043413.000NaNS

【提示】結合之前我們加載的train.csv數據,大致預測一下上面的數據是什么

2.4.2:任務二:使用concat方法:將數據train-left-up.csv和train-right-up.csv橫向合并為一張表,并保存這張表為result_up

#pandas.concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False, keys=None, levels=None, names=None, verify_integrity=False, sort=None, copy=True) #pandas.concat()函數以沿著指定的軸將多個dataframe或者series拼接到一起,默認axis=0,join='outer',以上下的方向拼接,類似數據庫中的全連接(union all)a1 = [train_left_up,train_right_up] result_up = pd.concat(a1,axis=1) result_up.head() PassengerIdSurvivedPclassNameSexAgeSibSpParchTicketFareCabinEmbarked01234
103Braund, Mr. Owen Harrismale22.010A/5 211717.2500NaNS
211Cumings, Mrs. John Bradley (Florence Briggs Th...female38.010PC 1759971.2833C85C
313Heikkinen, Miss. Lainafemale26.000STON/O2. 31012827.9250NaNS
411Futrelle, Mrs. Jacques Heath (Lily May Peel)female35.01011380353.1000C123S
503Allen, Mr. William Henrymale35.0003734508.0500NaNS

2.4.3 任務三:使用concat方法:將train-left-down和train-right-down橫向合并為一張表,并保存這張表為result_down。然后將上邊的result_up和result_down縱向合并為result。

a2 = [train_left_down,train_right_down] result_down = pd.concat(a2,axis=1) #result_downresult = pd.concat([result_up,result_down]) result PassengerIdSurvivedPclassNameSexAgeSibSpParchTicketFareCabinEmbarked01234567891011121314151617181920212223242526272829...422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451
103Braund, Mr. Owen Harrismale22.010A/5 211717.2500NaNS
211Cumings, Mrs. John Bradley (Florence Briggs Th...female38.010PC 1759971.2833C85C
313Heikkinen, Miss. Lainafemale26.000STON/O2. 31012827.9250NaNS
411Futrelle, Mrs. Jacques Heath (Lily May Peel)female35.01011380353.1000C123S
503Allen, Mr. William Henrymale35.0003734508.0500NaNS
603Moran, Mr. JamesmaleNaN003308778.4583NaNQ
701McCarthy, Mr. Timothy Jmale54.0001746351.8625E46S
803Palsson, Master. Gosta Leonardmale2.03134990921.0750NaNS
913Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)female27.00234774211.1333NaNS
1012Nasser, Mrs. Nicholas (Adele Achem)female14.01023773630.0708NaNC
1113Sandstrom, Miss. Marguerite Rutfemale4.011PP 954916.7000G6S
1211Bonnell, Miss. Elizabethfemale58.00011378326.5500C103S
1303Saundercock, Mr. William Henrymale20.000A/5. 21518.0500NaNS
1403Andersson, Mr. Anders Johanmale39.01534708231.2750NaNS
1503Vestrom, Miss. Hulda Amanda Adolfinafemale14.0003504067.8542NaNS
1612Hewlett, Mrs. (Mary D Kingcome)female55.00024870616.0000NaNS
1703Rice, Master. Eugenemale2.04138265229.1250NaNQ
1812Williams, Mr. Charles EugenemaleNaN0024437313.0000NaNS
1903Vander Planke, Mrs. Julius (Emelia Maria Vande...female31.01034576318.0000NaNS
2013Masselmani, Mrs. FatimafemaleNaN0026497.2250NaNC
2102Fynney, Mr. Joseph Jmale35.00023986526.0000NaNS
2212Beesley, Mr. Lawrencemale34.00024869813.0000D56S
2313McGowan, Miss. Anna "Annie"female15.0003309238.0292NaNQ
2411Sloper, Mr. William Thompsonmale28.00011378835.5000A6S
2503Palsson, Miss. Torborg Danirafemale8.03134990921.0750NaNS
2613Asplund, Mrs. Carl Oscar (Selma Augusta Emilia...female38.01534707731.3875NaNS
2703Emir, Mr. Farred ChehabmaleNaN0026317.2250NaNC
2801Fortune, Mr. Charles Alexandermale19.03219950263.0000C23 C25 C27S
2913O'Dwyer, Miss. Ellen "Nellie"femaleNaN003309597.8792NaNQ
3003Todoroff, Mr. LaliomaleNaN003492167.8958NaNS
....................................
86202Giles, Mr. Frederick Edwardmale21.0102813411.5000NaNS
86311Swift, Mrs. Frederick Joel (Margaret Welles Ba...female48.0001746625.9292D17S
86403Sage, Miss. Dorothy Edith "Dolly"femaleNaN82CA. 234369.5500NaNS
86502Gill, Mr. John Williammale24.00023386613.0000NaNS
86612Bystrom, Mrs. (Karolina)female42.00023685213.0000NaNS
86712Duran y More, Miss. Asuncionfemale27.010SC/PARIS 214913.8583NaNC
86801Roebling, Mr. Washington Augustus IImale31.000PC 1759050.4958A24S
86903van Melkebeke, Mr. PhilemonmaleNaN003457779.5000NaNS
87013Johnson, Master. Harold Theodormale4.01134774211.1333NaNS
87103Balkic, Mr. Cerinmale26.0003492487.8958NaNS
87211Beckwith, Mrs. Richard Leonard (Sallie Monypeny)female47.0111175152.5542D35S
87301Carlsson, Mr. Frans Olofmale33.0006955.0000B51 B53 B55S
87403Vander Cruyssen, Mr. Victormale47.0003457659.0000NaNS
87512Abelson, Mrs. Samuel (Hannah Wizosky)female28.010P/PP 338124.0000NaNC
87613Najib, Miss. Adele Kiamie "Jane"female15.00026677.2250NaNC
87703Gustafsson, Mr. Alfred Ossianmale20.00075349.8458NaNS
87803Petroff, Mr. Nedeliomale19.0003492127.8958NaNS
87903Laleff, Mr. KristomaleNaN003492177.8958NaNS
88011Potter, Mrs. Thomas Jr (Lily Alexenia Wilson)female56.0011176783.1583C50C
88112Shelley, Mrs. William (Imanita Parrish Hall)female25.00123043326.0000NaNS
88203Markun, Mr. Johannmale33.0003492577.8958NaNS
88303Dahlberg, Miss. Gerda Ulrikafemale22.000755210.5167NaNS
88402Banfield, Mr. Frederick Jamesmale28.000C.A./SOTON 3406810.5000NaNS
88503Sutehall, Mr. Henry Jrmale25.000SOTON/OQ 3920767.0500NaNS
88603Rice, Mrs. William (Margaret Norton)female39.00538265229.1250NaNQ
88702Montvila, Rev. Juozasmale27.00021153613.0000NaNS
88811Graham, Miss. Margaret Edithfemale19.00011205330.0000B42S
88903Johnston, Miss. Catherine Helen "Carrie"femaleNaN12W./C. 660723.4500NaNS
89011Behr, Mr. Karl Howellmale26.00011136930.0000C148C
89103Dooley, Mr. Patrickmale32.0003703767.7500NaNQ

891 rows × 12 columns

2.4.4 任務四:使用DataFrame自帶的方法join方法和append:完成任務二和任務三的任務

#DataFrame.join(other, on=None, how='left', lsuffix=' ', rsuffix=' ', sort=False) #主要用于基于行索引上的合并,join方法默認為左外連接how=’left’#DataFrame.append(other, ignore_index=False, verify_integrity=False, sort=None) #append是concat的簡略形式,只不過只能在axis=0上進行合并b1 = train_left_up.join(train_right_up) b2 = train_left_down.join(train_right_down) result1 = b1.append(b2) result1 PassengerIdSurvivedPclassNameSexAgeSibSpParchTicketFareCabinEmbarked01234567891011121314151617181920212223242526272829...422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451
103Braund, Mr. Owen Harrismale22.010A/5 211717.2500NaNS
211Cumings, Mrs. John Bradley (Florence Briggs Th...female38.010PC 1759971.2833C85C
313Heikkinen, Miss. Lainafemale26.000STON/O2. 31012827.9250NaNS
411Futrelle, Mrs. Jacques Heath (Lily May Peel)female35.01011380353.1000C123S
503Allen, Mr. William Henrymale35.0003734508.0500NaNS
603Moran, Mr. JamesmaleNaN003308778.4583NaNQ
701McCarthy, Mr. Timothy Jmale54.0001746351.8625E46S
803Palsson, Master. Gosta Leonardmale2.03134990921.0750NaNS
913Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)female27.00234774211.1333NaNS
1012Nasser, Mrs. Nicholas (Adele Achem)female14.01023773630.0708NaNC
1113Sandstrom, Miss. Marguerite Rutfemale4.011PP 954916.7000G6S
1211Bonnell, Miss. Elizabethfemale58.00011378326.5500C103S
1303Saundercock, Mr. William Henrymale20.000A/5. 21518.0500NaNS
1403Andersson, Mr. Anders Johanmale39.01534708231.2750NaNS
1503Vestrom, Miss. Hulda Amanda Adolfinafemale14.0003504067.8542NaNS
1612Hewlett, Mrs. (Mary D Kingcome)female55.00024870616.0000NaNS
1703Rice, Master. Eugenemale2.04138265229.1250NaNQ
1812Williams, Mr. Charles EugenemaleNaN0024437313.0000NaNS
1903Vander Planke, Mrs. Julius (Emelia Maria Vande...female31.01034576318.0000NaNS
2013Masselmani, Mrs. FatimafemaleNaN0026497.2250NaNC
2102Fynney, Mr. Joseph Jmale35.00023986526.0000NaNS
2212Beesley, Mr. Lawrencemale34.00024869813.0000D56S
2313McGowan, Miss. Anna "Annie"female15.0003309238.0292NaNQ
2411Sloper, Mr. William Thompsonmale28.00011378835.5000A6S
2503Palsson, Miss. Torborg Danirafemale8.03134990921.0750NaNS
2613Asplund, Mrs. Carl Oscar (Selma Augusta Emilia...female38.01534707731.3875NaNS
2703Emir, Mr. Farred ChehabmaleNaN0026317.2250NaNC
2801Fortune, Mr. Charles Alexandermale19.03219950263.0000C23 C25 C27S
2913O'Dwyer, Miss. Ellen "Nellie"femaleNaN003309597.8792NaNQ
3003Todoroff, Mr. LaliomaleNaN003492167.8958NaNS
....................................
86202Giles, Mr. Frederick Edwardmale21.0102813411.5000NaNS
86311Swift, Mrs. Frederick Joel (Margaret Welles Ba...female48.0001746625.9292D17S
86403Sage, Miss. Dorothy Edith "Dolly"femaleNaN82CA. 234369.5500NaNS
86502Gill, Mr. John Williammale24.00023386613.0000NaNS
86612Bystrom, Mrs. (Karolina)female42.00023685213.0000NaNS
86712Duran y More, Miss. Asuncionfemale27.010SC/PARIS 214913.8583NaNC
86801Roebling, Mr. Washington Augustus IImale31.000PC 1759050.4958A24S
86903van Melkebeke, Mr. PhilemonmaleNaN003457779.5000NaNS
87013Johnson, Master. Harold Theodormale4.01134774211.1333NaNS
87103Balkic, Mr. Cerinmale26.0003492487.8958NaNS
87211Beckwith, Mrs. Richard Leonard (Sallie Monypeny)female47.0111175152.5542D35S
87301Carlsson, Mr. Frans Olofmale33.0006955.0000B51 B53 B55S
87403Vander Cruyssen, Mr. Victormale47.0003457659.0000NaNS
87512Abelson, Mrs. Samuel (Hannah Wizosky)female28.010P/PP 338124.0000NaNC
87613Najib, Miss. Adele Kiamie "Jane"female15.00026677.2250NaNC
87703Gustafsson, Mr. Alfred Ossianmale20.00075349.8458NaNS
87803Petroff, Mr. Nedeliomale19.0003492127.8958NaNS
87903Laleff, Mr. KristomaleNaN003492177.8958NaNS
88011Potter, Mrs. Thomas Jr (Lily Alexenia Wilson)female56.0011176783.1583C50C
88112Shelley, Mrs. William (Imanita Parrish Hall)female25.00123043326.0000NaNS
88203Markun, Mr. Johannmale33.0003492577.8958NaNS
88303Dahlberg, Miss. Gerda Ulrikafemale22.000755210.5167NaNS
88402Banfield, Mr. Frederick Jamesmale28.000C.A./SOTON 3406810.5000NaNS
88503Sutehall, Mr. Henry Jrmale25.000SOTON/OQ 3920767.0500NaNS
88603Rice, Mrs. William (Margaret Norton)female39.00538265229.1250NaNQ
88702Montvila, Rev. Juozasmale27.00021153613.0000NaNS
88811Graham, Miss. Margaret Edithfemale19.00011205330.0000B42S
88903Johnston, Miss. Catherine Helen "Carrie"femaleNaN12W./C. 660723.4500NaNS
89011Behr, Mr. Karl Howellmale26.00011136930.0000C148C
89103Dooley, Mr. Patrickmale32.0003703767.7500NaNQ

891 rows × 12 columns

2.4.5 任務五:使用Panads的merge方法和DataFrame的append方法:完成任務二和任務三的任務

#how:連接方式,有inner、left、right、outer,默認為inner #left_index/right_index: 如果為True,則使用左側/右側DataFrame中的索引(行標簽)作為其連接鍵。 對于具有MultiIndex(分層)的DataFrame,級別數必須與右側DataFrame中的連接鍵數相匹配。 c1 = pd.merge(train_left_up,train_right_up,left_index=True,right_index=True) c2 = pd.merge(train_left_down,train_right_down,left_index=True,right_index=True) result2 = c1.append(c2) result2 PassengerIdSurvivedPclassNameSexAgeSibSpParchTicketFareCabinEmbarked01234567891011121314151617181920212223242526272829...422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451
103Braund, Mr. Owen Harrismale22.010A/5 211717.2500NaNS
211Cumings, Mrs. John Bradley (Florence Briggs Th...female38.010PC 1759971.2833C85C
313Heikkinen, Miss. Lainafemale26.000STON/O2. 31012827.9250NaNS
411Futrelle, Mrs. Jacques Heath (Lily May Peel)female35.01011380353.1000C123S
503Allen, Mr. William Henrymale35.0003734508.0500NaNS
603Moran, Mr. JamesmaleNaN003308778.4583NaNQ
701McCarthy, Mr. Timothy Jmale54.0001746351.8625E46S
803Palsson, Master. Gosta Leonardmale2.03134990921.0750NaNS
913Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)female27.00234774211.1333NaNS
1012Nasser, Mrs. Nicholas (Adele Achem)female14.01023773630.0708NaNC
1113Sandstrom, Miss. Marguerite Rutfemale4.011PP 954916.7000G6S
1211Bonnell, Miss. Elizabethfemale58.00011378326.5500C103S
1303Saundercock, Mr. William Henrymale20.000A/5. 21518.0500NaNS
1403Andersson, Mr. Anders Johanmale39.01534708231.2750NaNS
1503Vestrom, Miss. Hulda Amanda Adolfinafemale14.0003504067.8542NaNS
1612Hewlett, Mrs. (Mary D Kingcome)female55.00024870616.0000NaNS
1703Rice, Master. Eugenemale2.04138265229.1250NaNQ
1812Williams, Mr. Charles EugenemaleNaN0024437313.0000NaNS
1903Vander Planke, Mrs. Julius (Emelia Maria Vande...female31.01034576318.0000NaNS
2013Masselmani, Mrs. FatimafemaleNaN0026497.2250NaNC
2102Fynney, Mr. Joseph Jmale35.00023986526.0000NaNS
2212Beesley, Mr. Lawrencemale34.00024869813.0000D56S
2313McGowan, Miss. Anna "Annie"female15.0003309238.0292NaNQ
2411Sloper, Mr. William Thompsonmale28.00011378835.5000A6S
2503Palsson, Miss. Torborg Danirafemale8.03134990921.0750NaNS
2613Asplund, Mrs. Carl Oscar (Selma Augusta Emilia...female38.01534707731.3875NaNS
2703Emir, Mr. Farred ChehabmaleNaN0026317.2250NaNC
2801Fortune, Mr. Charles Alexandermale19.03219950263.0000C23 C25 C27S
2913O'Dwyer, Miss. Ellen "Nellie"femaleNaN003309597.8792NaNQ
3003Todoroff, Mr. LaliomaleNaN003492167.8958NaNS
....................................
86202Giles, Mr. Frederick Edwardmale21.0102813411.5000NaNS
86311Swift, Mrs. Frederick Joel (Margaret Welles Ba...female48.0001746625.9292D17S
86403Sage, Miss. Dorothy Edith "Dolly"femaleNaN82CA. 234369.5500NaNS
86502Gill, Mr. John Williammale24.00023386613.0000NaNS
86612Bystrom, Mrs. (Karolina)female42.00023685213.0000NaNS
86712Duran y More, Miss. Asuncionfemale27.010SC/PARIS 214913.8583NaNC
86801Roebling, Mr. Washington Augustus IImale31.000PC 1759050.4958A24S
86903van Melkebeke, Mr. PhilemonmaleNaN003457779.5000NaNS
87013Johnson, Master. Harold Theodormale4.01134774211.1333NaNS
87103Balkic, Mr. Cerinmale26.0003492487.8958NaNS
87211Beckwith, Mrs. Richard Leonard (Sallie Monypeny)female47.0111175152.5542D35S
87301Carlsson, Mr. Frans Olofmale33.0006955.0000B51 B53 B55S
87403Vander Cruyssen, Mr. Victormale47.0003457659.0000NaNS
87512Abelson, Mrs. Samuel (Hannah Wizosky)female28.010P/PP 338124.0000NaNC
87613Najib, Miss. Adele Kiamie "Jane"female15.00026677.2250NaNC
87703Gustafsson, Mr. Alfred Ossianmale20.00075349.8458NaNS
87803Petroff, Mr. Nedeliomale19.0003492127.8958NaNS
87903Laleff, Mr. KristomaleNaN003492177.8958NaNS
88011Potter, Mrs. Thomas Jr (Lily Alexenia Wilson)female56.0011176783.1583C50C
88112Shelley, Mrs. William (Imanita Parrish Hall)female25.00123043326.0000NaNS
88203Markun, Mr. Johannmale33.0003492577.8958NaNS
88303Dahlberg, Miss. Gerda Ulrikafemale22.000755210.5167NaNS
88402Banfield, Mr. Frederick Jamesmale28.000C.A./SOTON 3406810.5000NaNS
88503Sutehall, Mr. Henry Jrmale25.000SOTON/OQ 3920767.0500NaNS
88603Rice, Mrs. William (Margaret Norton)female39.00538265229.1250NaNQ
88702Montvila, Rev. Juozasmale27.00021153613.0000NaNS
88811Graham, Miss. Margaret Edithfemale19.00011205330.0000B42S
88903Johnston, Miss. Catherine Helen "Carrie"femaleNaN12W./C. 660723.4500NaNS
89011Behr, Mr. Karl Howellmale26.00011136930.0000C148C
89103Dooley, Mr. Patrickmale32.0003703767.7500NaNQ

891 rows × 12 columns

【思考】對比merge、join以及concat的方法的不同以及相同。思考一下在任務四和任務五的情況下,為什么都要求使用DataFrame的append方法,如何只要求使用merge或者join可不可以完成任務四和任務五呢?

2.4.6 任務六:完成的數據保存為result.csv

result.to_csv('result.csv')

2.5 換一種角度看數據

2.5.1 任務一:將我們的數據變為Series類型的數據

#DataFrame.stack(),將DataFrame轉Series,且把原來的列索引轉成了最內層的行索引(多層次索引) result_s = result.stack() result_s.head(30)# result_s.to_csv('result_Series.csv') 0 PassengerId 1Survived 0Pclass 3Name Braund, Mr. Owen HarrisSex maleAge 22SibSp 1Parch 0Ticket A/5 21171Fare 7.25Embarked S 1 PassengerId 2Survived 1Pclass 1Name Cumings, Mrs. John Bradley (Florence Briggs Th...Sex femaleAge 38SibSp 1Parch 0Ticket PC 17599Fare 71.2833Cabin C85Embarked C 2 PassengerId 3Survived 1Pclass 3Name Heikkinen, Miss. LainaSex femaleAge 26SibSp 0 dtype: object #寫入代碼 rs = pd.read_csv('result_Series.csv') rs.head(20) 0PassengerId1012345678910111213141516171819
0Survived0
0Pclass3
0NameBraund, Mr. Owen Harris
0Sexmale
0Age22.0
0SibSp1
0Parch0
0TicketA/5 21171
0Fare7.25
0EmbarkedS
1PassengerId2
1Survived1
1Pclass1
1NameCumings, Mrs. John Bradley (Florence Briggs Th...
1Sexfemale
1Age38.0
1SibSp1
1Parch0
1TicketPC 17599
1Fare71.2833

開始之前,導入numpy、pandas包和數據

# 導入基本庫 import numpy as np import pandas as pd # 載入上一個任務人保存的文件中:result.csv,并查看這個文件 result = pd.read_csv('result.csv') result.head() Unnamed: 0PassengerIdSurvivedPclassNameSexAgeSibSpParchTicketFareCabinEmbarked01234
0103Braund, Mr. Owen Harrismale22.010A/5 211717.2500NaNS
1211Cumings, Mrs. John Bradley (Florence Briggs Th...female38.010PC 1759971.2833C85C
2313Heikkinen, Miss. Lainafemale26.000STON/O2. 31012827.9250NaNS
3411Futrelle, Mrs. Jacques Heath (Lily May Peel)female35.01011380353.1000C123S
4503Allen, Mr. William Henrymale35.0003734508.0500NaNS

2 第二章:數據重構

第一部分:數據聚合與運算

2.6 數據運用

2.6.1 任務一:通過教材《Python for Data Analysis》P303、Google or anything來學習了解GroupBy機制

dataframe.groupby()函數主要的作用是進行數據的分組以及分組后地組內運算!

df.groupby([df[屬性],df[屬性])(指分類的屬性,數據的限定定語,可有多個).mean()(指定數據的計算函數)

2.4.2:任務二:計算泰坦尼克號男性與女性的平均票價

sex_fare_mean = result['Fare'].groupby(result['Sex']).mean() sex_fare_mean Sex female 44.479818 male 25.523893 Name: Fare, dtype: float64

2.4.3:任務三:統計泰坦尼克號中男女的存活人數

sex_survived_sum = result['Survived'].groupby(result['Sex']).sum() sex_survived_sum#result['Survived'].groupby(result['Sex']).count() Sex female 233 male 109 Name: Survived, dtype: int64

2.4.4:任務四:計算客艙不同等級的存活人數

result['Survived'].groupby(result['Pclass']).sum() Pclass 1 136 2 87 3 119 Name: Survived, dtype: int64

提示:】表中的存活那一欄,可以發現如果還活著記為1,死亡記為0

思考】從數據分析的角度,上面的統計結果可以得出那些結論

#思考心得 女性旅客的存活人數最高,客艙等級為1 的存活人數最高

【思考】從任務二到任務三中,這些運算可以通過agg()函數來同時計算。并且可以使用rename函數修改列名。你可以按照提示寫出這個過程嗎?

''' agg()函數通常用于調用groupby()函數之后,對數據做一些聚合操作(sum、count、max、mean等其他聚合函數) agg({'value1':'sum','value2':'mean'}) agg(['mean','max'])colNameDict = {'源數據列名':'新列名'} #將‘源數據列名’改為‘新列名’ df.rename(columns = colNameDict,inplace=True) '''result.groupby(result['Sex']).agg({'Fare':'mean','Survived':'sum'}).rename(columns={'Fare':'Fare_mean','Survived':'Survived_sum'}) Fare_meanSurvived_sumSexfemalemale
44.479818233
25.523893109

2.4.5:任務五:統計在不同等級的票中的不同年齡的船票花費的平均值

result['Fare'].groupby([result['Pclass'],result['Age']]).mean() Pclass Age 1 0.92 151.5500002.00 151.5500004.00 81.85830011.00 120.00000014.00 120.00000015.00 211.33750016.00 61.29306717.00 92.26110018.00 169.61250019.00 92.69250021.00 139.20693322.00 91.65666023.00 146.54443324.00 122.99761425.00 99.35696726.00 54.42500027.00 92.95730028.00 47.83020029.00 102.64583330.00 67.01736731.00 87.52750032.00 53.39585033.00 58.65000034.00 26.55000035.00 165.74491136.00 125.62361137.00 45.11806738.00 103.71180039.00 65.91832040.00 69.336660... 3 31.00 11.21607132.00 17.33575833.00 10.84478734.00 9.24895034.50 6.43750035.00 9.73680036.00 12.08193337.00 8.75625038.00 13.74895039.00 21.94583340.00 13.59916040.50 11.12500041.00 20.28332542.00 8.06667543.00 20.46666744.00 10.03125045.00 13.02584045.50 7.22500047.00 10.25000048.00 21.11460049.00 0.00000050.00 8.05000051.00 7.61806755.50 8.05000059.00 7.25000061.00 6.23750063.00 9.58750065.00 7.75000070.50 7.75000074.00 7.775000 Name: Fare, Length: 182, dtype: float64

2.4.6:任務六:將任務二和任務三的數據合并,并保存到sex_fare_survived.csv

pd.concat([sex_fare_mean,sex_survived_sum],axis=1) FareSurvivedSexfemalemale
44.479818233
25.523893109

2.4.7:任務七:得出不同年齡的總的存活人數,然后找出存活人數的最高的年齡,最后計算存活人數最高的存活率(存活人數/總人數)

#得出不同年齡的總的存活人數,然后找出存活人數的最高的年齡 Age_Survived_sum = result['Survived'].groupby(result['Age']).sum() Age_Survived_sum[Age_Survived_sum.values==Age_Survived_sum.max()] Age 24.0 15 Name: Survived, dtype: int64 #得出總的存活人數 result['Survived'].sum() 342 #計算存活人數最高的存活率(存活人數/總人數) Age_Survived_sum.max()/result['Survived'].sum() 0.043859649122807015

總結

以上是生活随笔為你收集整理的第二章:第二三节数据重构的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。

主站蜘蛛池模板: 521av在线 | 饥渴丰满的少妇喷潮 | 日本xxxx色 | 国产日韩欧美不卡 | 国产精品第九页 | 男人午夜剧场 | 特黄网站 | 成人午夜在线免费观看 | 人禽高h交 | 亚洲一区二区三区免费视频 | 亚洲免费一区视频 | 女性毛片| 国产日本欧美在线观看 | 中文字幕资源站 | 欧美日韩国产二区 | 国产精品自拍第一页 | 欢乐谷在线观看免费播放高清 | 波多野结衣之潜藏淫欲 | 69福利区 | 亚洲 小说 欧美 激情 另类 | 精产国品一区二区 | 五月婷婷中文字幕 | 一区二区三区在线播放视频 | 色妞视频| 伊人黄网 | 九九精品视频在线 | 成人一级在线 | 扒开jk护士狂揉免费 | 伊人久久天堂 | 大陆av片 | 热久久中文字幕 | 亚洲一区电影 | 国产福利精品在线 | 伊人亚洲综合 | 99riav视频 | 亚洲一区二区三区四区五区六区 | 欧美专区日韩专区 | 91成人在线观看喷潮 | 中文字幕av一区二区 | 无码精品一区二区三区在线 | 成人在线看片 | 男生操女生在线观看 | 国产一区自拍视频 | 91精品播放| 国产中文网 | 91亚洲国产成人久久精品麻豆 | 日日夜夜撸撸 | 日韩91视频 | 亚洲AV无码成人精品国产一区 | 免费无码毛片一区二区app | 国产女主播一区二区三区 | 五月激情婷婷网 | 欧美人妖另类 | 亚洲青草视频 | 91中文字幕网 | 蜜桃在线一区二区三区 | 免费大片av | 波多野结衣在线看 | 欧美日韩精品一区二区三区视频播放 | 天天射夜夜撸 | 最近中文字幕一区二区 | 日本三级中国三级99人妇网站 | 亚洲av永久无码精品放毛片 | 99热3| 91视频免费看片 | 精品国产乱码久久久久久蜜臀网站 | 爱情岛论坛成人 | 中文精品一区二区三区 | 黄色一级片av | 91九色国产| 天天干妹子 | 国产一区二区欧美日韩 | 成人福利一区二区 | 久草免费在线观看视频 | 亚洲在线看 | 国产aaa毛片 | 国产精品无码毛片 | 国产精彩视频在线 | 伊人春色在线观看 | 国产黄色片在线观看 | a∨色狠狠一区二区三区 | 火影黄动漫免费网站 | 久久亚| 午夜性刺激免费视频 | 日本老太婆做爰视频 | 午夜肉伦伦影院 | 又大又长粗又爽又黄少妇视频 | 性欧美ⅴideo另类hd | 成人人人人人欧美片做爰 | 欧美99视频 | 久草久草久草 | av网站免费观看 | 熟女毛片 | 国产一区在线免费观看 | 蜜桃精品视频在线观看 | 聚色屋| 91亚洲精品久久久久久久久久久久 | 综合国产视频 | 中文在线字幕 |