日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

Pastiche Master: Exemplar-Based High-Resolution Portrait Style Transfer

發布時間:2023/12/8 编程问答 34 豆豆
生活随笔 收集整理的這篇文章主要介紹了 Pastiche Master: Exemplar-Based High-Resolution Portrait Style Transfer 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

cvpr2022 code and paper

背景

現有的stylegan finetuning的人物風格化方法,基本上是將source domain變換到target domain,這要求target domain至少上百張質量較高的樣本,并且只能實現一種風格化。

DualStyleGAN在stylegan-ffhq的基礎上,同樣是finetuning,但是增加了condition,引入dual style path以及有效的監督,使得可以利用風格模板,生成符合模板風格的人臉圖像。

Method

DualStyleGAN整體分成2個大的部分:

  • 原始的stylegan,其中mapping network成為intrinsic style path,指的是真實人臉的風格
  • Extrinsic style path:控制風格

除此之外,還有一個Encoder,用于提取指定的真實或者風格圖像的code ∈R18×512\in R^{18 \times 512}R18×512
extrinsic style path還有ModRes,Ts, Tc這3類模塊,每個模塊的作用后面再說。
原始的stylegan在整個訓練過程中都是fixed,存在參數更新優化的只有橘色的部分。

intrinsic style path接受3種輸入:

  • 正太分布隨機采樣的z
  • 風格圖用E提取出來的latent code zi+z_i^+zi+?
  • 真實圖用E提取出來的latent code z+z^+z+

Extrinsic style path有兩種輸入:

  • 風格圖用E提取出來的latent code ze+z_e^+ze+?,捕捉語義信息,比如風格圖的頭發顏色,臉型等
  • 從高斯噪聲中采樣的z,通過N映射得到的code

生成圖像的過程如下:
G(E(I),E(S),w)G(z1,N(z2),w)G(E(I), E(S), w) \\ G(z1, N(z2), w)G(E(I),E(S),w)G(z1,N(z2),w)
w∈R18w \in R^{18}wR18是控制兩路style的混合權重,默認為1,當w為0是,模型就退化為原始的stylegan ffhq。

dualstylegan的Extrinsic style path得到code有兩個:

  • structure code
  • color code

color作用于8-18層,用于控制細粒度的風格
structure code組用于前7層,控制shape等粗粒度的風格。

color transfer

mapping network得到的color code,經過一個TcT_cTc?模塊(參與訓練的FC層),得到的均值方差會和stylegan原始的intrinsic style code按照比例混合。

structure control

在粗分辨率層(1-7),使用modulative residual blocks去調整stylegan的卷積特征,本質上是一個帶有adain的ResBlock。這里的設計思想是從無監督finetuning式風格化方法中總結得到。

toonify的成功,是在target domain上的finetuning。但在finetuning前后,兩種模型共享隱空間。繼而可以推測FT前的特征和FT后的特征其實是相關。而且FT之后,模型權重也改變了。因此作者認為,可以通過讓特征變化來模擬在FT過程中的權重變化。

因此作者使用了ResBlock,模擬FT之前的特征變化,這樣既可以在訓練初期,不改變特征空間,使得預訓練模型有效;還能在訓練過程中讓domain遷移。

訓練方式

作者使用了3階段訓練法,使用課程學習逐漸加大訓練的難度,讓pretrain模型更加穩定完成domain遷移。

stage 1: color transfer on source domain

先將modelRes的權重設置為0,這樣殘差為0,其實不改變原來的特征,不影響預訓練模型的FT穩定性。TcT_cTc? 的權重初始化為單位陣,所以不改變原來的FFHQ的latent code。這樣,第一階段的訓練,其實和帶有style mixing的標準訓練沒有區別。
從上圖可以看出,第一階段的FT結果,仍保留了原圖的shape,但是顏色等細節和風格圖一致。

stage 2:structure transfer on source domain

這個stage目的是讓dualstylegan學習到風格圖的中級風格。
隨機采樣z1z1z1z2z2z2,其中z~2\tilde{z}_2z~2?是從{z2,E(g(z2)}\{z_2, E(g(z_2)\}{z2?,E(g(z2?)}采樣,小ggg是stylegan-ffhq(w=0);zl+z_l^+zl+?z1,z2z1,z2z1,z2的stylemixing,lll是stylemixing的起始層數。lll會逐漸從7變成5。

min?Gmax?DλadvLadv+λperc?Lperc?(G(z1,z~2,1),g(zl+))\min _{G} \max _{D} \lambda_{\mathrm{adv}} \mathcal{L}_{\mathrm{adv}}+\lambda_{\text {perc }} \mathcal{L}_{\text {perc }}\left(G\left(\mathbf{z}_{1}, \tilde{\mathbf{z}}_{2}, \mathbf{1}\right), g\left(\mathbf{z}_{l}^{+}\right)\right) Gmin?Dmax?λadv?Ladv?+λperc??Lperc??(G(z1?,z~2?,1),g(zl+?))
pS:如果沒有這個perception loss,又會如何呢?這個監督有點雞肋的感覺,強行加個監督。
PS:而且為啥要用g(zl+)g\left(\mathbf{z}_{l}^{+}\right)g(zl+?)作為vgg loss的gt。因為g是原始ffhq的生成器,這是要讓模型再次生成真實人臉嗎?

stage3:style transfer on target domain

前兩個stage都算是在source domain的遷移,他們的效果仍然保留了真實的特征,只是顏色等微觀屬性傾向于是風格圖。stage3就要將模型想domain遷移了。
首先,用風格圖S的兩路style code重構S:
Lperc?(G(zi+,ze+,1),S)\mathcal{L}_{\text {perc }}\left(G\left(\mathbf{z}_{i}^{+}, \mathbf{z}_{e}^{+}, \mathbf{1}\right), S\right) Lperc??(G(zi+?,ze+?,1),S)
然后,使用style loss,包含content loss和feature matching loss,其中content loss就是ID loss和modelRes正則的和
Lsty?=λCXLCX(G(z,ze+,1),S)+λFMLFM(G(z,ze+,1),S)\mathcal{L}_{\text {sty }}=\lambda_{\mathrm{CX}} \mathcal{L}_{\mathrm{CX}}\left(G\left(\mathbf{z}, \mathbf{z}_{e}^{+}, \mathbf{1}\right), S\right)+\lambda_{\mathrm{FM}} \mathcal{L}_{\mathrm{FM}}\left(G\left(\mathbf{z}, \mathbf{z}_{e}^{+}, \mathbf{1}\right), S\right) Lsty??=λCX?LCX?(G(z,ze+?,1),S)+λFM?LFM?(G(z,ze+?,1),S)
Lcon=λIDLID(G(z,ze+,1),g(z))+λreg∥W∥2\mathcal{L}_{\mathrm{con}}=\lambda_{\mathrm{ID}} \mathcal{L}_{\mathrm{ID}}\left(G\left(\mathbf{z}, \mathbf{z}_{e}^{+}, \mathbf{1}\right), g(\mathbf{z})\right)+\lambda_{\mathrm{reg}}\|W\|_{2} Lcon?=λID?LID?(G(z,ze+?,1),g(z))+λreg?W2?

這篇論文還有細節需要深究,文中提到的Destylization的作用、多個z的定義,以及反復使用原始的ffhq的g,為什么這么設計,其實筆者也沒有搞清楚。

其他

總結

以上是生活随笔為你收集整理的Pastiche Master: Exemplar-Based High-Resolution Portrait Style Transfer的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。