日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問(wèn) 生活随笔!

生活随笔

當(dāng)前位置: 首頁(yè) > 编程资源 > 编程问答 >内容正文

编程问答

概率论与数理统计浙大第五版 第一章 部分习题+R代码

發(fā)布時(shí)間:2023/12/10 编程问答 34 豆豆
生活随笔 收集整理的這篇文章主要介紹了 概率论与数理统计浙大第五版 第一章 部分习题+R代码 小編覺(jué)得挺不錯(cuò)的,現(xiàn)在分享給大家,幫大家做個(gè)參考.

習(xí)題一

5.

(1)

設(shè)事件A為從中任意抽取5片,至少是2片安慰劑

P(A)=C52C53+C53C52+C54C51+C55C105=1?P(A ̄)=1?C51C54+C55C105=226252=113126\large {P(A)=\frac{C_{5}^{2}C_{5}^{3}+C_{5}^{3}C_{5}^{2}+C_{5}^{4}C_{5}^{1}+C_{5}^{5}}{C_{10}^{5}}=1-P(\overline A)}=1-\frac{C_{5}^{1}C_{5}^{4}+C_{5}^{5}}{C_{10}^{5}}=\frac{226}{252}=\frac{113}{126}P(A)=C105?C52?C53?+C53?C52?+C54?C51?+C55??=1?P(A)=1?C105?C51?C54?+C55??=252226?=126113?

t=choose(5,2)*choose(5,3)+choose(5,3)*choose(5,2)+choose(5,4)*choose(5,1)+choose(5,5) s=choose(10,5) p=t/s p

(2)

設(shè)事件A為第一次取到安慰劑,事件B為第二次取到安慰劑,事件C為第三次取到安慰劑

P(ABC)=P(C∣AB)P(B∣A)P(A)=12?49?38=112\large{P(ABC)=P(C|AB)P(B|A)P(A)}=\frac{1}{2}*\frac{4}{9}*\frac{3}{8}=\frac{1}{12}P(ABC)=P(CAB)P(BA)P(A)=21??94??83?=121?

6.

(1)

設(shè)事件A為最小號(hào)碼為5號(hào)

P(A)=C52C103=112\large{P(A)=\frac{C_{5}^{2}}{C_{10}^{3}}}=\frac{1}{12}P(A)=C103?C52??=121?

(2)

設(shè)事件A為最大號(hào)碼為5號(hào)

P(A)=C42C103=120\large{P(A)=\frac{C_{4}^{2}}{C_{10}^{3}}}=\frac{1}{20}P(A)=C103?C42??=201?

7.

設(shè)事件A為顧客恰能按所訂顏色如數(shù)得到訂貨

P(A)=C104C43C32C179=2522431\large{P(A)=\frac{C_{10}^{4}C_{4}^{3}C_{3}^{2}}{C_{17}^{9}}=\frac{252}{2431}}P(A)=C179?C104?C43?C32??=2431252?

8.

(1)

設(shè)事件A為恰有90件次品

P(A)=C40090C1100110C1500200\large{P(A)=\frac{C_{400}^{90}C_{1100}^{110}}{C_{1500}^{200}}}P(A)=C1500200?C40090?C1100110??

(太大了沒(méi)算,見(jiàn)R代碼及結(jié)果)

(2)

設(shè)事件A為至少有兩件次品

P(A)=1?P(A ̄)=1?C4001C1100199+C1100200C1500200\large{P(A)=1-P(\overline A)=1-\frac{C_{400}^{1}C_{1100}^{199}+C_{1100}^{200}}{C_{1500}^{200}}}P(A)=1?P(A)=1?C1500200?C4001?C1100199?+C1100200??

9.

設(shè)事件A為四只鞋子中至少有兩只配成一雙

P(A)=1?P(A ̄)=1?C54C215C104=1321\large{P(A)=1-P(\overline A)=1-\frac{C_{5}^{4}{C_{2}^{1}}^5}{C_{10}^{4}}}=\frac{13}{21}P(A)=1?P(A)=1?C104?C54?C21?5?=2113?

10.

設(shè)事件A為其排列結(jié)果為ability

P(A)=C11C21C21C11C11C11C11A117=1415800\large{P(A)=\frac{C_{1}^{1}C_{2}^{1}C_{2}^{1}C_{1}^{1}C_{1}^{1}C_{1}^{1}C_{1}^{1}}{A_{11}^{7}}}=\frac{1}{415800}P(A)=A117?C11?C21?C21?C11?C11?C11?C11??=4158001?

11.

設(shè)事件A為杯子中球的最大個(gè)數(shù)為1

P(A)=C4334\large{P(A)=\frac{C_{4}^{3}}{3^4}}P(A)=34C43??

設(shè)事件B為杯子中球的最大個(gè)數(shù)為2

P(B)=C41C3234\large{P(B)=\frac{C_{4}^{1}C_{3}^{2}}{3^4}}P(B)=34C41?C32??

設(shè)事件C為杯子中球的最大個(gè)數(shù)為3

P(C)=C41C3134\large{P(C)=\frac{C_{4}^{1}C_{3}^{1}}{3^4}}P(C)=34C41?C31??


以上做法是錯(cuò)誤的,再此感謝熱心網(wǎng)友指出錯(cuò)誤,下面說(shuō)明下正解,以及錯(cuò)誤原因


原題意思應(yīng)該是每個(gè)杯子的都是本質(zhì)不同的,例如:1 1 1 0 表示一二三號(hào)杯子各有一個(gè)球,但不等同于 0 1 1 1,同理得證及求球的個(gè)數(shù)的排列。

設(shè)事件A為杯子中球的最大個(gè)數(shù)為1

P(A)=A4343\large{P(A)=\frac{A_{4}^{3}}{4^3}}P(A)=43A43??

設(shè)事件B為杯子中球的最大個(gè)數(shù)為2

(三個(gè)球中選兩個(gè)球捆綁一起,在對(duì)應(yīng)投入杯中,下同理

P(B)=C32A4243\large{P(B)=\frac{C_{3}^{2}A_{4}^{2}}{4^3}}P(B)=43C32?A42??

設(shè)事件C為杯子中球的最大個(gè)數(shù)為3

P(C)=C33A4143\large{P(C)=\frac{C_{3}^{3}A_{4}^{1}}{4^3}}P(C)=43C33?A41??

R代碼讓我偷個(gè)懶 在此略過(guò) (~ ̄▽ ̄)~

12.

設(shè)事件A為發(fā)生一個(gè)部件強(qiáng)度太弱

P(A)=C101C473...C263C233C503C473...C263C233=C101C503=11960\large{P(A)=\frac{C_{10}^{1}C_{47}^{3}...C_{26}^{3}C_{23}^{3}}{C_{50}^{3}C_{47}^{3}...C_{26}^{3}C_{23}^{3}}=\frac{C_{10}^{1}}{C_{50}^{3}}}=\frac{1}{1960}P(A)=C503?C473?...C263?C233?C101?C473?...C263?C233??=C503?C101??=19601?

13.

(1)

設(shè)事件A為任選4名學(xué)生,一、二、三、四年級(jí)的學(xué)生各占一名

P(A)=C51C21C31C21C125=433\large{P(A)=\frac{C_{5}^{1}C_{2}^{1}C_{3}^{1}C_{2}^{1}}{C_{12}^{5}}=\frac{4}{33}}P(A)=C125?C51?C21?C31?C21??=334?

(2)

設(shè)事件A為任選5名學(xué)生,一、二、三、四年級(jí)的學(xué)生均包含在內(nèi)

P(A)=C52C21C31C21+C51C22C31C21+C51C21C32C21+C51C21C31C22C125=1033\large{P(A)=\frac{C_{5}^{2}C_{2}^{1}C_{3}^{1}C_{2}^{1}+C_{5}^{1}C_{2}^{2}C_{3}^{1}C_{2}^{1}+C_{5}^{1}C_{2}^{1}C_{3}^{2}C_{2}^{1}+C_{5}^{1}C_{2}^{1}C_{3}^{1}C_{2}^{2}}{C_{12}^{5}}}=\frac{10}{33}P(A)=C125?C52?C21?C31?C21?+C51?C22?C31?C21?+C51?C21?C32?C21?+C51?C21?C31?C22??=3310?

R

代碼

詳細(xì)解釋在代碼注釋中

# 定義一個(gè)函數(shù),該函數(shù)為所求的積分函數(shù) # 因此在計(jì)算上述定積分和計(jì)算sqrt(2)同理 # 在此用例為sqrt(2) f = function(x)sqrt(2) # 生成x x = seq(1.5, 3.5, length=100) y = rep(0, length(x)) j = 1 # 計(jì)算每個(gè)x對(duì)應(yīng)的y值 for (i in x) {y[j] = f(i)j = j + 1 } # 根據(jù)函數(shù)劃出積分曲線 plot(x, y, type='o') # 確定積分邊界 abline(v = 2) abline(v = 3) # 簡(jiǎn)單設(shè)定隨機(jī)點(diǎn) (x,y)|2<=x<=3,0<=y<=100 # 即隨機(jī)點(diǎn)的分布面積為100 s = 100 a = 0 cnt <- 1 # 有興趣的朋友可以適當(dāng)?shù)亩嘌h(huán)幾次,這樣結(jié)果更為精確,但是運(yùn)行時(shí)間太長(zhǎng),并沒(méi)有跑太久 while (cnt <= 100000) {# 隨機(jī)點(diǎn) xx,yyxx = 2 + runif(1)yy = 100 * runif(1)# 點(diǎn)在積分面積內(nèi)則點(diǎn)為紅色if( f(xx) > yy ) {a = a + 1points(x = xx, y = yy, pch = 20, cex = 1, col = "red")}# 否則為綠色elsepoints(x = xx, y = yy, pch = 20, cex = 1, col = "green")cnt = cnt + 1 } # 計(jì)算積分 print((a / 10000) * s)

總結(jié)

以上是生活随笔為你收集整理的概率论与数理统计浙大第五版 第一章 部分习题+R代码的全部?jī)?nèi)容,希望文章能夠幫你解決所遇到的問(wèn)題。

如果覺(jué)得生活随笔網(wǎng)站內(nèi)容還不錯(cuò),歡迎將生活随笔推薦給好友。