日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

视觉SLAM十四讲学习笔记——ch10 后端2

發布時間:2023/12/10 编程问答 35 豆豆
生活随笔 收集整理的這篇文章主要介紹了 视觉SLAM十四讲学习笔记——ch10 后端2 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

文章目錄

  • 10.1理論部分
  • 10.2實踐部分
    • 10.2.1 李代數上的位姿圖優化
    • 10.2.2 g2o原聲位姿圖優化
    • 調試遇到問題bug
  • 參考博客

10.1理論部分

推薦參考博文推導:

  • SLAM十四講-后端2-ch10-代碼注釋(位姿圖優化)
  • SLAM14講學習筆記(七)后端(BA與圖優化,Pose Graph優化的理論與公式詳解、因子圖優化)
  • 10.2實踐部分

    10.2.1 李代數上的位姿圖優化

    代碼及詳細注釋如下:

    #include <iostream> #include <fstream> #include <string> #include <Eigen/Core>#include <g2o/core/base_vertex.h> #include <g2o/core/base_binary_edge.h> #include <g2o/core/block_solver.h> #include <g2o/core/optimization_algorithm_levenberg.h> #include <g2o/solvers/eigen/linear_solver_eigen.h>#include <sophus/se3.hpp>using namespace std; using namespace Eigen; using Sophus::SE3d; using Sophus::SO3d;/************************************************* 本程序演示如何用g2o solver進行位姿圖優化* sphere.g2o是人工生成的一個Pose graph,我們來優化它。* 盡管可以直接通過load函數讀取整個圖,但我們還是自己來實現讀取代碼,以期獲得更深刻的理解* 本節使用李代數表達位姿圖,節點和邊的方式為自定義* 利用 g2o對sphere.g2o文件進行優化 優化前 用g20——viewer顯示為橢球 * 用g2o的話 需要定義頂點和邊 * 位姿圖優化就是只優化位姿 不優化路標點 * 頂點應該相機的位姿 * 邊是相鄰兩個位姿的變換 * error誤差是觀測的相鄰相機的位姿變換的逆 * 待優化的相鄰相機的位姿變換 * 我們希望這個誤差接近I矩陣 給誤差取ln后 誤差接近 0 * 該程序用李代數描述誤差* 這里把J矩陣的計算放在JRInv(const SE3d & e)函數里 * 這里的J矩陣還不是雅克比矩陣 具體雅克比見書上公式 p272頁 公式10.9 10.10 * 李代數應該是向量形式 * 李代數的hat 也就是李代數向量變為反對稱矩陣* **********************************************/typedef Matrix<double, 6, 6> Matrix6d;// 給定誤差求J_R^{-1}的近似 Matrix6d JRInv(const SE3d &e) {Matrix6d J;J.block(0, 0, 3, 3) = SO3d::hat(e.so3().log());J.block(0, 3, 3, 3) = SO3d::hat(e.translation());J.block(3, 0, 3, 3) = Matrix3d::Zero(3, 3);J.block(3, 3, 3, 3) = SO3d::hat(e.so3().log());// J = J * 0.5 + Matrix6d::Identity();J = Matrix6d::Identity(); // try Identity if you wantreturn J; }// 李代數頂點 typedef Matrix<double, 6, 1> Vector6d;class VertexSE3LieAlgebra : public g2o::BaseVertex<6, SE3d> { public:EIGEN_MAKE_ALIGNED_OPERATOR_NEW//讀取數據virtual bool read(istream &is) override {double data[7];for (int i = 0; i < 7; i++)is >> data[i];setEstimate(SE3d(Quaterniond(data[6], data[3], data[4], data[5]),Vector3d(data[0], data[1], data[2])));}//將優化的位姿存入內存 virtual bool write(ostream &os) const override {os << id() << " ";Quaterniond q = _estimate.unit_quaternion();os << _estimate.translation().transpose() << " ";//coeffs順序是 x y z w ,w是實部os << q.coeffs()[0] << " " << q.coeffs()[1] << " " << q.coeffs()[2] << " " << q.coeffs()[3] << endl;return true;}virtual void setToOriginImpl() override {_estimate = SE3d();//李代數}// 左乘更新virtual void oplusImpl(const double *update) override {Vector6d upd;//六維向量 upd接收 updateupd << update[0], update[1], update[2], update[3], update[4], update[5];_estimate = SE3d::exp(upd) * _estimate;//更新位姿} };// 兩個李代數節點之邊 // 定義邊 兩個李代數頂點的邊 邊就是兩個頂點之間的變換 即位姿之間的變換 class EdgeSE3LieAlgebra : public g2o::BaseBinaryEdge<6, SE3d, VertexSE3LieAlgebra, VertexSE3LieAlgebra> { public:EIGEN_MAKE_ALIGNED_OPERATOR_NEW//讀取觀測值和構造信息矩陣virtual bool read(istream &is) override {//這里觀測值是位子之間的變換,當然包括旋轉和平移 所以 data[]是7維 平移加四元數double data[7];for (int i = 0; i < 7; i++)is >> data[i];//流入data[]Quaterniond q(data[6], data[3], data[4], data[5]);q.normalize();//歸一化setMeasurement(SE3d(q, Vector3d(data[0], data[1], data[2])));for (int i = 0; i < information().rows() && is.good(); i++)for (int j = i; j < information().cols() && is.good(); j++) {is >> information()(i, j);if (i != j) //不是對角線的地方information()(j, i) = information()(i, j);}return true;}//這個函數就是為了把優化好的相機位姿放進指定文件中去virtual bool write(ostream &os) const override {//v1,V2分別指向兩個頂點VertexSE3LieAlgebra *v1 = static_cast<VertexSE3LieAlgebra *> (_vertices[0]);VertexSE3LieAlgebra *v2 = static_cast<VertexSE3LieAlgebra *> (_vertices[1]);os << v1->id() << " " << v2->id() << " "; //把兩個定點的編號流入osSE3d m = _measurement;Eigen::Quaterniond q = m.unit_quaternion(); //獲取單位四元數//先傳入平移 再傳入四元數os << m.translation().transpose() << " ";os << q.coeffs()[0] << " " << q.coeffs()[1] << " " << q.coeffs()[2] << " " << q.coeffs()[3] << " ";// information matrix 信息矩陣for (int i = 0; i < information().rows(); i++)for (int j = i; j < information().cols(); j++) {os << information()(i, j) << " ";}os << endl;return true;}// 誤差計算與書中推導一致virtual void computeError() override {//v1,V2分別指向兩頂點的位姿SE3d v1 = (static_cast<VertexSE3LieAlgebra *> (_vertices[0]))->estimate();SE3d v2 = (static_cast<VertexSE3LieAlgebra *> (_vertices[1]))->estimate();_error = (_measurement.inverse() * v1.inverse() * v2).log();}// 雅可比計算virtual void linearizeOplus() override {SE3d v1 = (static_cast<VertexSE3LieAlgebra *> (_vertices[0]))->estimate();SE3d v2 = (static_cast<VertexSE3LieAlgebra *> (_vertices[1]))->estimate();Matrix6d J = JRInv(SE3d::exp(_error)); //計算d// 嘗試把J近似為I//雅克比有兩個,一個是誤差對相機i位姿的雅克比,另一個是誤差對相機j位姿的雅克比_jacobianOplusXi = -J * v2.inverse().Adj();_jacobianOplusXj = J * v2.inverse().Adj();} };int main(int argc, char **argv) {if (argc != 2) {cout << "Usage: pose_graph_g2o_SE3_lie sphere.g2o" << endl;return 1;}//將sphere.g2o文件流入finifstream fin(argv[1]);if (!fin) {cout << "file " << argv[1] << " does not exist." << endl;return 1;}// 設定g2otypedef g2o::BlockSolver<g2o::BlockSolverTraits<6, 6>> BlockSolverType; //6,6是頂點和邊的維度typedef g2o::LinearSolverEigen<BlockSolverType::PoseMatrixType> LinearSolverType; //線性求解//設置梯度下降的方法auto solver = new g2o::OptimizationAlgorithmLevenberg(g2o::make_unique<BlockSolverType>(g2o::make_unique<LinearSolverType>()));g2o::SparseOptimizer optimizer; // 圖模型optimizer.setAlgorithm(solver); // 設置求解器optimizer.setVerbose(true); // 打開調試輸出int vertexCnt = 0, edgeCnt = 0; // 頂點和邊的數量//容器 vectices 和edges 存放各個頂點和邊vector<VertexSE3LieAlgebra *> vectices;vector<EdgeSE3LieAlgebra *> edges;while (!fin.eof()) {string name;fin >> name;//將文件中的頂點數據流入,頂點就是各個相機的位姿if (name == "VERTEX_SE3:QUAT") {// 頂點VertexSE3LieAlgebra *v = new VertexSE3LieAlgebra();int index = 0;fin >> index;v->setId(index);v->read(fin); //這里是setEstimateoptimizer.addVertex(v);vertexCnt++;vectices.push_back(v);if (index == 0)v->setFixed(true);} else if (name == "EDGE_SE3:QUAT") {// SE3-SE3 邊EdgeSE3LieAlgebra *e = new EdgeSE3LieAlgebra();int idx1, idx2; // 關聯的兩個頂點fin >> idx1 >> idx2; //頂點的IDe->setId(edgeCnt++); ///設置邊的ID//設置頂點e->setVertex(0, optimizer.vertices()[idx1]);e->setVertex(1, optimizer.vertices()[idx2]);e->read(fin); //讀取觀測值optimizer.addEdge(e);edges.push_back(e);}if (!fin.good()) break;}//輸出邊的頂點的合的個數cout << "read total " << vertexCnt << " vertices, " << edgeCnt << " edges." << endl;cout << "optimizing ..." << endl;optimizer.initializeOptimization(); //優化初始化optimizer.optimize(30); //迭代次數cout << "saving optimization results ..." << endl;// 因為用了自定義頂點且沒有向g2o注冊,這里保存自己來實現// 偽裝成 SE3 頂點和邊,讓 g2o_viewer 可以認出ofstream fout("result_lie.g2o");for (VertexSE3LieAlgebra *v:vectices) {fout << "VERTEX_SE3:QUAT ";v->write(fout); //把優化的頂點放進 result_lie.g2o}for (EdgeSE3LieAlgebra *e:edges) {fout << "EDGE_SE3:QUAT ";e->write(fout); //把優化的邊放進 result_lie.g2o}fout.close();return 0; }

    結果如下所示:

    read total 2500 vertices, 9799 edges. optimizing ... iteration= 0 chi2= 674837160.579970 time= 0.566391 cumTime= 0.566391 edges= 9799 schur= 0 lambda= 6658.554263 levenbergIter= 1 iteration= 1 chi2= 234706314.970484 time= 0.506822 cumTime= 1.07321 edges= 9799 schur= 0 lambda= 2219.518088 levenbergIter= 1 iteration= 2 chi2= 142146174.348537 time= 0.502332 cumTime= 1.57554 edges= 9799 schur= 0 lambda= 739.839363 levenbergIter= 1 iteration= 3 chi2= 83834595.145595 time= 0.617319 cumTime= 2.19286 edges= 9799 schur= 0 lambda= 246.613121 levenbergIter= 1 iteration= 4 chi2= 41878079.903257 time= 0.542277 cumTime= 2.73514 edges= 9799 schur= 0 lambda= 82.204374 levenbergIter= 1 iteration= 5 chi2= 16598628.119947 time= 0.519183 cumTime= 3.25432 edges= 9799 schur= 0 lambda= 27.401458 levenbergIter= 1 iteration= 6 chi2= 6137666.739405 time= 0.53891 cumTime= 3.79323 edges= 9799 schur= 0 lambda= 9.133819 levenbergIter= 1 iteration= 7 chi2= 2182986.250593 time= 0.535928 cumTime= 4.32916 edges= 9799 schur= 0 lambda= 3.044606 levenbergIter= 1 iteration= 8 chi2= 732676.668220 time= 0.477907 cumTime= 4.80707 edges= 9799 schur= 0 lambda= 1.014869 levenbergIter= 1 iteration= 9 chi2= 284457.115176 time= 0.48001 cumTime= 5.28708 edges= 9799 schur= 0 lambda= 0.338290 levenbergIter= 1 iteration= 10 chi2= 170796.109734 time= 0.497792 cumTime= 5.78487 edges= 9799 schur= 0 lambda= 0.181974 levenbergIter= 1 iteration= 11 chi2= 145466.315841 time= 0.527085 cumTime= 6.31196 edges= 9799 schur= 0 lambda= 0.060658 levenbergIter= 1 iteration= 12 chi2= 142373.179500 time= 0.546491 cumTime= 6.85845 edges= 9799 schur= 0 lambda= 0.020219 levenbergIter= 1 iteration= 13 chi2= 137485.756901 time= 0.544264 cumTime= 7.40271 edges= 9799 schur= 0 lambda= 0.006740 levenbergIter= 1 iteration= 14 chi2= 131202.175668 time= 0.484477 cumTime= 7.88719 edges= 9799 schur= 0 lambda= 0.002247 levenbergIter= 1 iteration= 15 chi2= 128006.202530 time= 0.481649 cumTime= 8.36884 edges= 9799 schur= 0 lambda= 0.000749 levenbergIter= 1 iteration= 16 chi2= 127587.860945 time= 0.707194 cumTime= 9.07603 edges= 9799 schur= 0 lambda= 0.000250 levenbergIter= 1 iteration= 17 chi2= 127578.599359 time= 0.537201 cumTime= 9.61323 edges= 9799 schur= 0 lambda= 0.000083 levenbergIter= 1 iteration= 18 chi2= 127578.573853 time= 0.476409 cumTime= 10.0896 edges= 9799 schur= 0 lambda= 0.000028 levenbergIter= 1 iteration= 19 chi2= 127578.573840 time= 0.504015 cumTime= 10.5937 edges= 9799 schur= 0 lambda= 0.000018 levenbergIter= 1 iteration= 20 chi2= 127578.573840 time= 0.488356 cumTime= 11.082 edges= 9799 schur= 0 lambda= 0.000012 levenbergIter= 1 iteration= 21 chi2= 127578.573840 time= 0.486927 cumTime= 11.5689 edges= 9799 schur= 0 lambda= 0.000008 levenbergIter= 1 iteration= 22 chi2= 127578.573840 time= 1.51253 cumTime= 13.0815 edges= 9799 schur= 0 lambda= 0.000044 levenbergIter= 3 iteration= 23 chi2= 127578.573840 time= 1.47973 cumTime= 14.5612 edges= 9799 schur= 0 lambda= 0.000234 levenbergIter= 3 iteration= 24 chi2= 127578.573840 time= 4.95243 cumTime= 19.5136 edges= 9799 schur= 0 lambda= 5483030743.383683 levenbergIter= 10 saving optimization results ...

    10.2.2 g2o原聲位姿圖優化

    代碼及詳細注釋如下:

    #include <iostream> #include <fstream> #include <string>#include <g2o/types/slam3d/types_slam3d.h> #include <g2o/core/block_solver.h> #include <g2o/core/optimization_algorithm_levenberg.h> #include <g2o/solvers/eigen/linear_solver_eigen.h>using namespace std;/************************************************* 本程序演示如何用g2o solver進行位姿圖優化* sphere.g2o是人工生成的一個Pose graph,我們來優化它。* 盡管可以直接通過load函數讀取整個圖,但我們還是自己來實現讀取代碼,以期獲得更深刻的理解* 這里使用g2o/types/slam3d/中的SE3表示位姿,它實質上是四元數而非李代數.* **********************************************/int main(int argc, char **argv) {//不用定義頂點和邊if (argc != 2) {cout << "Usage: pose_graph_g2o_SE3 sphere.g2o" << endl;return 1;}ifstream fin(argv[1]);if (!fin) {cout << "file " << argv[1] << " does not exist." << endl;return 1;}// 設定g2o// 使用g2o/types/slam3d/中的SE3表示位姿,它實質上是四元數而非李代數typedef g2o::BlockSolver<g2o::BlockSolverTraits<6, 6>> BlockSolverType; //頂點6維,邊6維typedef g2o::LinearSolverEigen<BlockSolverType::PoseMatrixType> LinearSolverType;auto solver = new g2o::OptimizationAlgorithmLevenberg(g2o::make_unique<BlockSolverType>(g2o::make_unique<LinearSolverType>()));g2o::SparseOptimizer optimizer; // 圖模型optimizer.setAlgorithm(solver); // 設置求解器optimizer.setVerbose(true); // 打開調試輸出int vertexCnt = 0, edgeCnt = 0; // 頂點和邊的數量while (!fin.eof()) {string name;fin >> name;if (name == "VERTEX_SE3:QUAT") {// SE3 頂點g2o::VertexSE3 *v = new g2o::VertexSE3();int index = 0;fin>>index;//編號v->setId(index);//設置頂點編號v->read(fin);//讀取邊 就是setEstimate()optimizer.addVertex(v);//加入頂點vertexCnt++;//頂點個數++//設置是否固定,第一幀固定if (index == 0)v->setFixed(true);} else if (name == "EDGE_SE3:QUAT") {// SE3-SE3 邊g2o::EdgeSE3 *e = new g2o::EdgeSE3();int idx1, idx2; // 關聯的兩個頂點fin >> idx1 >> idx2;e->setId(edgeCnt++);//設置idx所對應的頂點e->setVertex(0, optimizer.vertices()[idx1]);e->setVertex(1, optimizer.vertices()[idx2]);e->read(fin); //讀取觀測數據optimizer.addEdge(e); //加入邊}if (!fin.good()) break;}cout << "read total " << vertexCnt << " vertices, " << edgeCnt << " edges." << endl;cout << "optimizing ..." << endl;optimizer.initializeOptimization(); //優化初始化optimizer.optimize(30); //迭代次數cout << "saving optimization results ..." << endl;optimizer.save("result.g2o");//保存優化后的文件return 0; }

    結果如下所示:

    read total 2500 vertices, 9799 edges. optimizing ... iteration= 0 chi2= 1023011093.967642 time= 0.422639 cumTime= 0.422639 edges= 9799 schur= 0 lambda= 805.622433 levenbergIter= 1 iteration= 1 chi2= 385118688.233188 time= 0.382178 cumTime= 0.804817 edges= 9799 schur= 0 lambda= 537.081622 levenbergIter= 1 iteration= 2 chi2= 166223726.693658 time= 0.42988 cumTime= 1.2347 edges= 9799 schur= 0 lambda= 358.054415 levenbergIter= 1 iteration= 3 chi2= 86610874.269316 time= 0.462892 cumTime= 1.69759 edges= 9799 schur= 0 lambda= 238.702943 levenbergIter= 1 iteration= 4 chi2= 40582782.710190 time= 0.420185 cumTime= 2.11777 edges= 9799 schur= 0 lambda= 159.135295 levenbergIter= 1 iteration= 5 chi2= 15055383.753040 time= 0.39671 cumTime= 2.51448 edges= 9799 schur= 0 lambda= 101.425210 levenbergIter= 1 iteration= 6 chi2= 6715193.487654 time= 0.377734 cumTime= 2.89222 edges= 9799 schur= 0 lambda= 37.664667 levenbergIter= 1 iteration= 7 chi2= 2171949.168383 time= 0.405097 cumTime= 3.29732 edges= 9799 schur= 0 lambda= 12.554889 levenbergIter= 1 iteration= 8 chi2= 740566.827049 time= 0.370052 cumTime= 3.66737 edges= 9799 schur= 0 lambda= 4.184963 levenbergIter= 1 iteration= 9 chi2= 313641.802464 time= 0.360452 cumTime= 4.02782 edges= 9799 schur= 0 lambda= 2.583432 levenbergIter= 1 iteration= 10 chi2= 82659.743578 time= 0.367851 cumTime= 4.39567 edges= 9799 schur= 0 lambda= 0.861144 levenbergIter= 1 iteration= 11 chi2= 58220.369189 time= 0.384526 cumTime= 4.7802 edges= 9799 schur= 0 lambda= 0.287048 levenbergIter= 1 iteration= 12 chi2= 52214.188561 time= 0.36656 cumTime= 5.14676 edges= 9799 schur= 0 lambda= 0.095683 levenbergIter= 1 iteration= 13 chi2= 50948.580336 time= 0.382879 cumTime= 5.52963 edges= 9799 schur= 0 lambda= 0.031894 levenbergIter= 1 iteration= 14 chi2= 50587.776729 time= 0.3974 cumTime= 5.92703 edges= 9799 schur= 0 lambda= 0.016436 levenbergIter= 1 iteration= 15 chi2= 50233.038802 time= 0.388748 cumTime= 6.31578 edges= 9799 schur= 0 lambda= 0.010957 levenbergIter= 1 iteration= 16 chi2= 49995.082836 time= 0.41957 cumTime= 6.73535 edges= 9799 schur= 0 lambda= 0.007305 levenbergIter= 1 iteration= 17 chi2= 48876.738968 time= 0.757956 cumTime= 7.49331 edges= 9799 schur= 0 lambda= 0.009298 levenbergIter= 2 iteration= 18 chi2= 48806.625520 time= 0.373177 cumTime= 7.86648 edges= 9799 schur= 0 lambda= 0.006199 levenbergIter= 1 iteration= 19 chi2= 47790.891374 time= 0.788389 cumTime= 8.65487 edges= 9799 schur= 0 lambda= 0.008265 levenbergIter= 2 iteration= 20 chi2= 47713.626578 time= 0.427388 cumTime= 9.08226 edges= 9799 schur= 0 lambda= 0.005510 levenbergIter= 1 iteration= 21 chi2= 46869.323691 time= 0.799491 cumTime= 9.88175 edges= 9799 schur= 0 lambda= 0.007347 levenbergIter= 2 iteration= 22 chi2= 46802.585509 time= 0.393055 cumTime= 10.2748 edges= 9799 schur= 0 lambda= 0.004898 levenbergIter= 1 iteration= 23 chi2= 46128.758046 time= 0.736299 cumTime= 11.0111 edges= 9799 schur= 0 lambda= 0.006489 levenbergIter= 2 iteration= 24 chi2= 46069.133544 time= 0.389972 cumTime= 11.4011 edges= 9799 schur= 0 lambda= 0.004326 levenbergIter= 1 iteration= 25 chi2= 45553.862168 time= 0.960659 cumTime= 12.3617 edges= 9799 schur= 0 lambda= 0.005595 levenbergIter= 2 iteration= 26 chi2= 45511.762622 time= 0.480517 cumTime= 12.8423 edges= 9799 schur= 0 lambda= 0.003730 levenbergIter= 1 iteration= 27 chi2= 45122.763002 time= 0.701183 cumTime= 13.5434 edges= 9799 schur= 0 lambda= 0.004690 levenbergIter= 2 iteration= 28 chi2= 45095.174401 time= 0.426408 cumTime= 13.9698 edges= 9799 schur= 0 lambda= 0.003127 levenbergIter= 1 iteration= 29 chi2= 44811.248507 time= 0.788535 cumTime= 14.7584 edges= 9799 schur= 0 lambda= 0.003785 levenbergIter= 2 saving optimization results ...

    利用g2o_viewer 顯示結果如下:(注意文件路徑)

    g2o_viewer sphere.g2o g2o_viewer result_lie.g2o

    sphere.g2o
    result_lie.g2o

    調試遇到問題bug

    本章調試遇到bug和第8章基本一致,此外還遇到fmt報錯問題,都可以通過修改CmakeList調試通過
    修改如下:set(CMAKE_CXX_FLAGS "-O3 -std=c++11")改為set(CMAKE_CXX_FLAGS "-std=c++14 -O2 ${SSE_FLAGS} -msse4"),在每一個target_link_libraries末尾加上 fmt.

    cmake_minimum_required(VERSION 2.8) project(pose_graph)set(CMAKE_BUILD_TYPE "Release") #set(CMAKE_CXX_FLAGS "-std=c++11 -O2") set(CMAKE_CXX_FLAGS "-std=c++14 -O2 ${SSE_FLAGS} -msse4")list(APPEND CMAKE_MODULE_PATH ${PROJECT_SOURCE_DIR}/cmake_modules)# Eigen include_directories("/usr/include/eigen3")# sophus find_package(Sophus REQUIRED) include_directories(${Sophus_INCLUDE_DIRS})# g2o find_package(G2O REQUIRED) include_directories(${G2O_INCLUDE_DIRS})add_executable(pose_graph_g2o_SE3 pose_graph_g2o_SE3.cpp) target_link_libraries(pose_graph_g2o_SE3g2o_core g2o_stuff g2o_types_slam3d ${CHOLMOD_LIBRARIES} fmt)add_executable(pose_graph_g2o_lie pose_graph_g2o_lie_algebra.cpp) target_link_libraries(pose_graph_g2o_lieg2o_core g2o_stuff${CHOLMOD_LIBRARIES}${Sophus_LIBRARIES} fmt)

    參考博客

  • SLAM十四講-后端2-ch10-代碼注釋(位姿圖優化)
  • SLAM14講學習筆記(七)后端(BA與圖優化,Pose Graph優化的理論與公式詳解、因子圖優化)
  • 總結

    以上是生活随笔為你收集整理的视觉SLAM十四讲学习笔记——ch10 后端2的全部內容,希望文章能夠幫你解決所遇到的問題。

    如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。