k-means 聚类过程演示
k-means是一種非監督 (從下圖 0 當中我們可以看到訓練數據并沒有標簽標注類別)的聚類算法:
K-Means clustering intends to partition?n?objects into?k?clusters in which each object belongs to the cluster with the nearest mean. This method produces exactly?k?different clusters of greatest possible distinction. The best number of clusters?k?leading to the greatest separation (distance) is not known as a priori and must be computed from the data. The objective of K-Means clustering is to minimize total intra-cluster variance, or, the squared error function:?
?
0.initial
?
1.select centroids randomly? ?
??
?
2.assign points
?
?3.update centroids
?4.reassign points
?5.update centroids
?
?6.reassign points
?
7.iteration
?
reference:
https://www.naftaliharris.com/blog/visualizing-k-means-clustering/
https://www.saedsayad.com/clustering_kmeans.htm
轉載請注明來源:https://www.cnblogs.com/lnas01/p/10347650.html
?
轉載于:https://www.cnblogs.com/lnas01/p/10347650.html
總結
以上是生活随笔為你收集整理的k-means 聚类过程演示的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: matlab常用函数——数学函数
- 下一篇: js和layerjs配合实现的拖拽表格列