日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

机器学习:邹博邹伟教学

發布時間:2023/12/10 编程问答 30 豆豆
生活随笔 收集整理的這篇文章主要介紹了 机器学习:邹博邹伟教学 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

鄒博,中國科學院副研究員,天津大學軟件學院創業導師,成立中國科學院鄒博,人工智能研究中心(杭州站) ,在規創、天識,容客邦等公司擔任技術顧問,研·究方向機器學習、深度學習、計算幾何,應用于大型氣象設備圖像與文本挖握股票交易與預測、量子化學醫藥路徑尋優、傳統農資產品價格預測和決策等領域。

課程介紹

本課程特點是從數學層面推導最經典的機器學習算法,以及每種算法的示例和代碼實現(Python)、如何做算法的參數調試、以實際應用案例分析各種算法的選擇等。

1.每個算法模塊按照“原理講解→分析數據→自己動手實現→特征與調參”的順序,“原理加實踐,頂天立地”。

2.拒絕簡單的“調包”——增加3次“機器學習的角度看數學”和3次“Python數據清洗和特征提取”,提升學習深度、降低學習坡度。

3.增加網絡爬蟲的原理和編寫,從獲取數據開始,重視將實踐問題轉換成實際模型的能力,分享工作中的實際案例或Kaggle案例:廣告銷量分析、環境數據異常檢測和分析、數字圖像手寫體識別、Titanic乘客存活率預測、用戶-電影推薦、真實新聞組數據主題分析、中文分詞、股票數據特征分析等。

4.強化矩陣運算、概率論、數理統計的知識運用,掌握機器學習根本。

5.闡述機器學習原理,提供配套源碼和數據;確保“懂推導,會實現”。

6.刪去過于晦澀的公式推導,代之以直觀解釋,增強感性理解。

7.對比不同的特征選擇帶來的預測效果差異。

8.重視項目實踐(如工業實踐、Kaggle等),重視落地。思考不同算法之間的區別和聯系,提高在實際工作中選擇算法的能力。

9.涉及和講解的部分Python庫有:Numpy、Scipy、matplotlib、Pandas、scikit-learn、XGBoost、libSVM、LDA、Gensim、NLTK、HMMLearn,涉及的其他“小”庫在課程的實踐環節會逐一講解。

課程目錄

第一課:機器學習的數學基礎1 - 數學分析

1. 機器學習的一般方法和橫向比較

2. 數學是有用的:以SVD為例

3. 機器學習的角度看數學

4. 復習數學分析

5. 直觀解釋常數e

6. 導數/梯度

7. 隨機梯度下降

8. Taylor展式的落地應用

9. gini系數

10. 凸函數

11. Jensen不等式

12. 組合數與信息熵的關系

第二課:機器學習的數學基礎2 - 概率論與貝葉斯先驗

1. 概率論基礎

2. 古典概型

3. 貝葉斯公式

4. 先驗分布/后驗分布/共軛分布

5. 常見概率分布

6. 泊松分布和指數分布的物理意義

7. 協方差(矩陣)和相關系數

8. 獨立和不相關

9. 大數定律和中心極限定理的實踐意義

10. 深刻理解最大似然估計MLE和最大后驗估計MAP

11. 過擬合的數學原理與解決方案

第三課:機器學習的數學基礎3 - 矩陣和線性代數

1. 線性代數在數學科學中的地位

2. 馬爾科夫模型

3. 矩陣乘法的直觀表達

4. 狀態轉移矩陣

5. 矩陣和向量組

6. 特征向量的思考和實踐計算

7. QR分解

8. 對稱陣、正交陣、正定陣

9. 數據白化及其應用

10. 向量對向量求導

11. 標量對向量求導

12. 標量對矩陣求導

第四課:Python基礎1 - Python及其數學庫

1. 解釋器Python2.7與IDE:Anaconda/Pycharm

2. Python基礎:列表/元組/字典/類/文件

3. Taylor展式的代碼實現

4. numpy/scipy/matplotlib/panda的介紹和典型使用

5. 多元高斯分布

6. 泊松分布、冪律分布

7. 典型圖像處理

8. 蝴蝶效應

9. 分形

第五課:Python基礎2 - 機器學習庫

1. scikit-learn的介紹和典型使用

2. 損失函數的繪制

3. 多種數學曲線

4. 多項式擬合

5. 快速傅里葉變換FFT

6. 奇異值分解SVD

7. Soble/Prewitt/Laplacian算子與卷積網絡

8. 卷積與(指數)移動平均線

9. 股票數據分析

第六課:Python基礎3 - 數據清洗和特征選擇

1. 實際生產問題中算法和特征的關系

2. 股票數據的特征提取和應用

3. 一致性檢驗

4. 缺失數據的處理

5. 環境數據異常檢測和分析

6. 模糊數據查詢和數據校正方法、算法、應用

7. 樸素貝葉斯用于鳶尾花數據

8. GaussianNB/MultinomialNB/BernoulliNB

9. 樸素貝葉斯用于18000+篇/Sogou新聞文本的分類

第七課: 回歸

1. 線性回歸

2. Logistic/Softmax回歸

3. 廣義線性回歸

4. L1/L2正則化

5. Ridge與LASSO

6. Elastic Net

7. 梯度下降算法:BGD與SGD

8. 特征選擇與過擬合

第八課:Logistic回歸

1. Sigmoid函數的直觀解釋

2. Softmax回歸的概念源頭

3. Logistic/Softmax回歸

4. 最大熵模型

5. K-L散度

6. 損失函數

7. Softmax回歸的實現與調參

第九課:回歸實踐

1. 機器學習sklearn庫介紹

2. 線性回歸代碼實現和調參

3. Softmax回歸代碼實現和調參

4. Ridge回歸/LASSO/Elastic Net

5. Logistic/Softmax回歸

6. 廣告投入與銷售額回歸分析

7. 鳶尾花數據集的分類

8. 交叉驗證

9. 數據可視化

第十課:決策樹和隨機森林

1. 熵、聯合熵、條件熵、KL散度、互信息

2. 最大似然估計與最大熵模型

3. ID3、C4.5、CART詳解

4. 決策樹的正則化

5. 預剪枝和后剪枝

6. Bagging

7. 隨機森林

8. 不平衡數據集的處理

9. 利用隨機森林做特征選擇

10. 使用隨機森林計算樣本相似度

11. 數據異常值檢測

第十一課:隨機森林實踐

1. 隨機森林與特征選擇

2. 決策樹應用于回歸

3. 多標記的決策樹回歸

4. 決策樹和隨機森林的可視化

5. 葡萄酒數據集的決策樹/隨機森林分類

6. 波士頓房價預測

第十二課:提升

1. 提升為什么有效

2. 梯度提升決策樹GBDT

3. XGBoost算法詳解

4. Adaboost算法

5. 加法模型與指數損失

第十三課:提升實踐

1. Adaboost用于蘑菇數據分類

2. Adaboost與隨機森林的比較

3. XGBoost庫介紹

4. Taylor展式與學習算法

5. KAGGLE簡介

6. 泰坦尼克乘客存活率估計

第十四課:SVM

1. 線性可分支持向量機

2. 軟間隔的改進

3. 損失函數的理解

4. 核函數的原理和選擇

5. SMO算法

6. 支持向量回歸SVR

第十五課:SVM實踐

1. libSVM代碼庫介紹

2. 原始數據和特征提取

3. 調用開源庫函數完成SVM

4. 葡萄酒數據分類

5. 數字圖像的手寫體識別

6. SVR用于時間序列曲線預測

7. SVM、Logistic回歸、隨機森林三者的橫向比較

第十六課:聚類(上)

1. 各種相似度度量及其相互關系

2. Jaccard相似度和準確率、召回率

3. Pearson相關系數與余弦相似度

4. K-means與K-Medoids及變種

5. AP算法(Sci07)/LPA算法及其應用

第十七課:聚類(下)

1. 密度聚類DBSCAN/DensityPeak(Sci14)

2. DensityPeak(Sci14)

3. 譜聚類SC

4. 聚類評價AMI/ARI/Silhouette

5. LPA算法及其應用

第十八課:聚類實踐

1. K-Means++算法原理和實現

2. 向量量化VQ及圖像近似

3. 并查集的實踐應用

4. 密度聚類的代碼實現

5. 譜聚類用于圖片分割

第十九課:EM算法

1. 最大似然估計

2. Jensen不等式

3. 樸素理解EM算法

4. 精確推導EM算法

5. EM算法的深入理解

6. 混合高斯分布

7. 主題模型pLSA

第二十課:EM算法實踐

1. 多元高斯分布的EM實現

2. 分類結果的數據可視化

3. EM與聚類的比較

4. Dirichlet過程EM

5. 三維及等高線等圖件的繪制

6. 主題模型pLSA與EM算法

第二十一課:主題模型LDA

1. 貝葉斯學派的模型認識

2. 共軛先驗分布

3. Dirichlet分布

4. Laplace平滑

5. Gibbs采樣詳解

第二十二課:LDA實踐

1. 網絡爬蟲的原理和代碼實現

2. 停止詞和高頻詞

3. 動手自己實現LDA

4. LDA開源包的使用和過程分析

5. Metropolis-Hastings算法

6. MCMC

7. LDA與word2vec的比較

第二十三課:隱馬爾科夫模型HMM

1. 概率計算問題

2. 前向/后向算法

3. HMM的參數學習

4. Baum-Welch算法詳解

5. Viterbi算法詳解

6. 隱馬爾科夫模型的應用優劣比較

第二十四課:HMM實踐

1. 動手自己實現HMM用于中文分詞

2. 多個語言分詞開源包的使用和過程分析

3. 文件數據格式UFT-8、Unicode

4. 停止詞和標點符號對分詞的影響

5. 前向后向算法計算概率溢出的解決方案

6. 發現新詞和分詞效果分析

7. 高斯混合模型HMM

8. GMM-HMM用于股票數據特征提取

?

下載地址:百度網盤

總結

以上是生活随笔為你收集整理的机器学习:邹博邹伟教学的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。