日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問(wèn) 生活随笔!

生活随笔

當(dāng)前位置: 首頁(yè) > 编程资源 > 编程问答 >内容正文

编程问答

递推公式求通项

發(fā)布時(shí)間:2023/12/18 编程问答 30 豆豆
生活随笔 收集整理的這篇文章主要介紹了 递推公式求通项 小編覺(jué)得挺不錯(cuò)的,現(xiàn)在分享給大家,幫大家做個(gè)參考.

不動(dòng)點(diǎn)求通項(xiàng)

1、一階線性遞推式an+1=can+d,c≠0,c≠1a_{n+1}=ca_n+d,c\neq 0,c\neq 1an+1?=can?+d,c?=0,c?=1,已知 a1a_1a1?的值
特征方程:f(x)=ax+bf(x)=ax+bf(x)=ax+b,令 f(x)=xf(x)=xf(x)=x,解得特征根為 x0x_0x0?,則可得:an?x0=c(an?1?x0)=cn?1(a1?x0)a_n-x_0=c(a_{n-1}-x_0)=c^{n-1}(a_1-x_0)an??x0?=c(an?1??x0?)=cn?1(a1??x0?)
an=cn?1(a1?x0)+x0a_n=c^{n-1}(a_1-x_0)+x_0an?=cn?1(a1??x0?)+x0?
當(dāng) x0=a1x_0= a_1x0?=a1?時(shí),an=x0a_n=x_0an?=x0?
當(dāng) x0≠a1x_0\neq a_1x0??=a1?時(shí),an=cn?1(a1?x0)+x0a_n=c^{n-1}(a_1-x_0)+x_0an?=cn?1(a1??x0?)+x0?

2、二階線性遞推an+2=pan+1+qana_{n+2}=pa_{n+1}+qa_{n}an+2?=pan+1?+qan?,已知 a1,a2a_1,a_2a1?,a2?,可以聯(lián)立求得A、B
特征方程:x2=px+qx^2=px+qx2=px+q,設(shè)有特征根x1,x2x_1,x_2x1?,x2?
當(dāng) x1≠x2x_1\neq x_2x1??=x2?時(shí),an=Ax1n?1+Bx2n?1a_n=Ax_1^{n-1}+Bx_2^{n-1}an?=Ax1n?1?+Bx2n?1?
當(dāng) x1=x2x_1=x_2x1?=x2?時(shí),an=(A+Bn)x1n?1a_n=(A+Bn)x_1^{n-1}an?=(A+Bn)x1n?1?

3、分式遞推式an+1=aan+bcan+da_{n+1}=\frac {aa_{n}+b}{ca_n+d}an+1?=can?+daan?+b?r≠0,ad≠bc,a1≠?dcr\neq 0,ad\neq bc,a_1\neq -\frac dcr?=0,ad?=bc,a1??=?cd?,已知a1a_1a1?的值
特征方程:x=ax+bcx+dx=\frac {ax+b}{cx+d}x=cx+dax+b?,設(shè)x1,x2x_1,x_2x1?,x2?是兩個(gè)特征根,

當(dāng) x1≠x2x_1\neq x_2x1??=x2?時(shí),an?x1an?x2=a?x1ca?x2c×an?1?x1an?1?x2\frac {a_n-x_1}{a_n-x_2}=\frac {a-x_1c}{a-x_2c}\times \frac{a_{n-1}-x_1}{a_{n-1}-x_2}an??x2?an??x1??=a?x2?ca?x1?c?×an?1??x2?an?1??x1??

當(dāng) x1=x2x_1= x_2x1?=x2?時(shí),1an?x1=1an?1?x1+2ca+d\frac 1{a_n-x_1}=\frac 1{a_{n-1}-x_1}+\frac {2c}{a+d}an??x1?1?=an?1??x1?1?+a+d2c?

型如an+1=an2+ban+da_{n+1}=\frac {a_n^2+b}{a_n+d}an+1?=an?+dan2?+b?
例:已知數(shù)列 { ana_nan?},an+1=an2+22an,a1=2a_{n+1}=\frac {a_n^2+2}{2a_n},a_1=2an+1?=2an?an2?+2?,a1?=2,求通項(xiàng)

解:f(x)=x2+22x=x,x1=2,x2=?2f(x)=\frac {x^2+2}{2x}=x,x_1=\sqrt 2,x_2=-\sqrt 2f(x)=2xx2+2?=x,x1?=2?,x2?=?2?

an+1?2an+1+2=(an?2an+2)2=(a1?2a1+2)2n?1\frac {a_{n+1}-2}{a_{n+1}+2}=(\frac {a_{n}-2}{a_{n}+2})^2=(\frac {a_1-2}{a_1+2})^{2^{n-1}}an+1?+2an+1??2?=(an?+2an??2?)2=(a1?+2a1??2?)2n?1

解得:
an=2×(2+2)2n?1+(2?2)2n?1(2+2)2n?1?(2?2)2n?1a_n=\sqrt 2\times \frac{ (2+\sqrt 2)^{2^{n-1} } +(2-\sqrt 2)^{2^{n-1}} }{ (2+\sqrt 2)^{2^{n-1} } -(2-\sqrt 2)^{2^{n-1}} }an?=2?×(2+2?)2n?1?(2?2?)2n?1(2+2?)2n?1+(2?2?)2n?1?

總結(jié)

以上是生活随笔為你收集整理的递推公式求通项的全部?jī)?nèi)容,希望文章能夠幫你解決所遇到的問(wèn)題。

如果覺(jué)得生活随笔網(wǎng)站內(nèi)容還不錯(cuò),歡迎將生活随笔推薦給好友。